
OTIC FILE COPY

. ... •11 July 1989

.v w s .e10-.ion -cr Public }c2c-, c-e

.0O: PA

S . lC quc-t Vou revicw p?. a,.ached iOr uub-ic release :'ior to
being sent to DT2C.

2. Ppiy by indorsemer;. -o Ci]2J,

.. i -'/ -.;

EEKiEST A. 1HAY(;OOD, 1st L-. USAF c1.
Px ecuti ve Officer THESIS 89-077
Civilian Tnstitution Programs SIMS

I S T d, • AF'K-/PA 8F s
TO:

CI

A-,r ve,4a/ pa... ; for Dubli "c release.

Log Number: 89-10-121

HARRIET D. MOUL-rRIE, Capt, USAF

Director, Office of Public Affairs

OTIC

FE 90

SECURITY CLASSIFICATION OF THIS PAGE

Form ApprovedREPORT DOCUMENTATION PAGE OM No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED NONE

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
APPROVED FOR PUBLIC RELEASE;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE DISTRIBUTION UNLIMITED.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/CI/CIA-89-077

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
AFIT STUDENT AT UNIV OF (If applicable) AFIT/CIA

SOUTH FLORIDA I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Wright-Patterson AFB OH 45433-6583

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK IWORK UNIT
ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (Include Security Classification) (UNCLASSIFIED)
A Review of the Suitability of Available Conputer Aided Software Engineering (CASE) Tools
For The Small Software Development Environment

12. PERSONAL AUTHOR(S)
Marc L. Sims

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
TmsIS/k M FROM TO 1988 1 106

16. SUPPLEMENTARY NOTATION APP1RUVE3 FUR PUB IC RELEASE IAW AFR 190-1
ERNEST A. HAYGOOD, 1st Lt, USAF
Executive Officer, Civilian Institution Programs

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
'UNCLASSIFIEDUNLIMITED 0 SAME AS RPT. C DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
ERNEST A. HAYGOOD, Ist Lt, USAF (513) 255-2259 1 AFIT/CI

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

AFIT/CI "OVERPRINT"

I

A REVIEW OF THE SUITABILITY OF AVAILABLE COMPUTER AIDED
SOFTWARE ENGINEERING (CASE) TOOLS FOR THE SMALL SOFTWARE

DEVELOPMENT ENVIRONMENT

Author: Marc L. Sims

Rank: Captain

Service: United States Air Force

Date: 1988

Pages: 106

Degree: Master of Science in Computer Engineering (M.S.Cp.E.)

Institution: University of South Florida

Accession For

NTIS CRA&I
DTIC TAB
Unannoun,,ed El
Just i fic at ion

By
Distribution/

Availbillity Codes

Avail and/or
Dist Special

A REVIEW OF THE SUITABILITY OF AVAILABLE COMPUTER AIDED
SOFTWARE ENGINEERING (CASE) TOOLS FOR THE SMALL SOFTWARE

DEVELOPMENT ENVIRONMENT

by

Marc L. Sims

An Abstract

Of a thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering

in the Department of Computer Science & Engineering in
the University of South Florida

December 1988

This research informally investigates the use of Computer Aided Software Engineering

(CASE) tools by a small software development organization. These tools are heralded as

being productivity enhancers for software development personnel. Most of the literature

discusses the generic use of this new generation of software development tools. This

research effort focuses on the appropriateness of using these tools by the small software

development organizations consisting of less than seven personnel. Provided in this thesis

is a brief presentation of the software engineering discipline and descriptions of the CASE

family of tools along with a discussion of 33 specific tools. A small software development

organization model is provided and its areas of concerns are discussed. This research also

performed a survey of users of current CASE products and the results from the 76

respondents are presented.

LITERATURE CITED

[Boeh73] Boehm, Barry W., "Software and its Impact: A Quantitative Assessment,"
Datamation, 19, 5, (May 1973), pp 48-59.

[Boeh76] Boehm, Barry W., "Software Engineering," IEEE Transactions on
Computers, C-25, 12, (December 1976), pp 1226-1241.

[Boeh81a] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, (1981).

[Boeh8lb] Boehm, Barry W., "An Experiment in Small Scale Application Software
Engineering," IEEE Transactions on Software Engineering, SE7,5,
(September 1981) pp 482-493.

[Booc87] Booch, Grady, Software Engneering with Ada, 2ed, Benjamin/Cummings
Publishing Company Inc., Menlo Park, CA, (1987).

[Broo82] Brooks, Frederick P. Jr., "The Mythical Man-Month. Essays on Software
Engineering," Addison-Wesley Publishing Company, Reading, MA,
(1982).

[Broo85] Brookshear, Glenn J., Computer Science: An Overview,
Benjamin/Cummings Publishing Company Inc., Menlo Park, CA, (1985).

[Brow88] Brown, Alice C., "Review of the Availability of CASE Tools for the PC
and Workstations," IEEE & ACM Professional Development Seminar,
Tampa, FL, (June 4, 1988).

[Char86] Charette, Robert N., Software Engineering Environments: Concepts and
Technology, McGraw Hill, Inc., New York, NY, (1986).

[Dema79] DeMarco, Tom, Structured Analysis and Specification, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, (1979).

[Dijk65] Dijkstra, Edsger W., "Programming Considered as a Human Activity," in
Proceedings of the 1965 International Federation of Information Processing
C North Holland Publishing Company, Amsterdam, Netherlands,
(1965) pp 213-217.

[Dijk72] Dijkstra, Edsger W., "The Humble Programmer," Communications of the
ACM, 15, 10, (October 1972), pp 859-866.

[DOD88] Department of Defense. Defense System Software Development,
DOD-STD-2167A, Department of Defense, Washington D.C., (1988).

[Edwa88] Edwards, William W. II, "A Methodology for CASE Tool Selecetion," in
Proceedings of CASE Studies 1988. Ninth Annual Conference on
Applications of Computer Aided Software Engineering Tools, (May 23-27
1988), Section C8801, ppl-35.

[Gibs88] Gibson, Michael L., "A Guide to Selecting CASE Tools," Datamation,
34, 13, (July 1, 1988), pp 65-66.

[Glas82] Glass, Robert L., "Recommended: A Minimum Standard Software
Toolset," ACM Software Engineering Notes, 7,4, (October 1982), pp 3-13.

[Hoar81] Hoare, C. A. R., "The Emperor's Old Clothes," Communications of the
ACM, 24,2, (February, 1981), pp 75-83.

[Jack83] Jackson, M.A., System Development, Prentice-Hall, Inc., Englewood
Cliffs, NJ, (1983).

[Knut73] Knuth, Donald E. The Art of Computer Progamming. Vol 1/ Fundlemental
Algorithms, 2ed, Addison-Wesley Publishing Company, Reading, MA,
(1973).

[Lick85] Licker, Paul S., The Art of Managing Software Development People,
John Wiley & Sons, New York, NY, (1985).

[Merl88] Merlyn, Vaughn P., "CASE - Today and in the Future," in Proceedings f
CASE Studies 1988. Ninth Annual Conference on Applications of
Computer Aided Software Engineering Tools, (May 23-27, 1988), Section
C8820, ppl-12.

[Naur76] Naur, Peter, Randell, Brian, Buxton, J.N., Software Engineering Concepts
and Techniques: Proceedings of the NATO Conferences,
Petrocelli/Charter, New York, NY, (1976).

[Orr77] Orr, K.T., Structured Systems Development, Yourdon Press, New York,
NY, (1977).

[Parn72] Parnas, D. L., "On Criteria to be used in Decomposing Systems into
Modules," Communications of the ACM, 15, 12, (December 1972), pp
1053-1058.

[Pres87] Pressman, Roger S., Softvare Engineering: A Practitioner's Approach,
2ed, McGraw-Hill Book Company, New York, NY, (1987).

[Stay76] Stay, J.F., "HIPO and Ingrated Program Design," IBM Systems Journal,
15, 2 (1976), pp 143-154.

[Voe188] Voelcker, John, "Automating Software: Proceed with Caution," IEEE
Spectrum, 25, 7, (July 1988), pp 25-27.

[Ward86] Ward, Frank, "Keynote Address", Proceedings: Workshop on Future
Directions in Computer Architecture and Software, (Dharma P. Agrawal,
ed.), 5-7 May 1986, pp 1-15.

[Warn74] Warnier, Jean D., Logical Construction of Programs. 3ed., Van Nostrand
Reinhold Company, New York, NY, (1974).

[Wass82] Wasserman, Antony, I., "Automated Tools in the Information System
Development Environment," in Automated Tools for Information Systems
Design, (Hans-Jochen Schneider & Antony I Wasserman, eds.), North
Holland Publishing Company, Amersterdam, The Netherlands, (1982),
pp 1-9.

[Whit88] Whitmore, Sam, "Programming Shortcuts are Not Time Savers in Long
Run," PC Week (June 28 1988), pg 32.

[Wein71] Weinberg, Gerald M., The Psychology of Computer Programming, Van
Nostrand Reinhold Company, New York, NY, (1971).

[Wirt7l] Wirth, Niklaus, "Program Development by Stepwise Refinement,"
Communications of the ACM, 14, 4, (April 1971), pp 221-227.

[Your79] Yourdon, Edward N., and Constantine, Larry L., Structured Design:
Fundlementals of a Discipline of Computer Program and System Design,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1979).

Graduate Council
University of South Florida

Tampa, Florida

CERTIFICATE OF APPROVAL

MASTER'S THESIS

This is to certify that the Master's Thesis of

Marc L. Sims

with a major in Computer Engineering
has been approved by the Examining Committee
on 2 November, 1988 as satisfactory for the
Thesis requirement for the Master of Science in
Computer Engineering degree.

Thesis Committee:) I9.

Major Professor: W. / Jaylor, Ph.D.

Member: H;'ey Glass, Sc.D.

Member: D~ewey Rundus, Ph.D.

A REVIEW OF THE SUITABILITY OF AVAILABLE COMPUTER AIDED
SOFTWARE ENGINEERING (CASE) TOOLS FOR THE SMALL SOFTWARE

DEVELOPMENT ENVIRONMENT

by

Marc L. Sims

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering

in the Department of Computer Science & Engineering in
the University of South Florida

December 1988

Major Professor: W. Clark Naylor, Ph.D.

ACKNOWLEDGEMENTS

I would first like to express my gratitude to the special ladies in my life; Dorothy, Dori

and Tonya who have provided unswerving support to me in all of my endeavors. With

their faith, humor ard stability, my journey has been both pleasurable and rewarding.

I would also like to especially thank my major professor, Dr Clark Naylor for his

counsel and encouragement. He tirelessly provided his valuable time and energy to keep

me on course for these past months. My thanks to my committee members; to Dr Glass for

suggesting a research topic that was both professionally relevant and personally interesting

and to Dr Rundus for his stimulating discussions. I also offer my appreciation for the

camaraderie and fellowship provided by my good friends and colleagues at the University

of South Florida.

In the past 19 years, I have had the good fortune to work with and learn from

exceptional people and I would like to take this opportunity to acknowledge their

contributions. Special thanks go to John Matson, Harold Gordon, Don Amitrani, Bill

Mace, Jim Senter and Bob Alford. They have been exceptional friends.

Thanks go to the vendors who provided assistance and support for this research.

Special thanks go to the dozens of software professionals who spent their valuable time to

help our effort. To all, my sincere appreciation.

ii

TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

ABSTRACT viii

1. INTRODUCTION I
1. Background 1
2. Statement of the Problem 2
3. Research Objectives 2
4. Methodology 3

II. THE SOFTWARE CRISIS 4
1. Historical Perspective 4
2. Current Status 7
3. Future Trends 7

III. SOFTWARE ENGINEERING 9
1. Definition 10
2. Software Development Methodologies 12

2.1. Waterfall: The Classic Model 13
2.2. Prototyping: A Rapid Alternative 16
2.3. Fourth Generation Techniques: Model of the Future? 18

3. Software Design Techniques 19
3.1. Process-Oriented Design 19
3.2. Data-Structure Design 20
3.3. Object-Oriented Design 21

4. Summary 21

IV. AN OVERVIEW OF COMPUTER AIDED SOFTWARE ENGINEERING
(CASE) SOFTWARE DEVELOPMENT TOOLS 23
1. Introduction 23
2. Tools for the Software Development Environment 24

2.1. Project Management Tools 25
2.2. Requirements Definition and Analysis Tools 26
2.3. Design Tools 27
2.4. Coding Tools 27
2.5. Testing Tools 30
2.6. Maintenance Tools 30

iii

3. CASE Tools Hierarchy 31
3.1. Front-End CASE Tools 32
3.2. Back-End CASE Tools 33
3.3. Reverse Engineering/Maintenance CASE Tools 34

4. CASE Product Descriptions 34
4.1. ProKit*Workbench 34

4.1.1. Hardware Requirements 35
4.1.2. Project Management Capabilities 35
4.1.3. Front-end Capabilities 35

4.2. RECODER 36
4.2.1. Project Management Capabilities 38
4.2.2. Reverse Engineering/Maintenance Capabilities 38

4.3. Power Tools 40
4.3.1. Front-end Capabilities 40
4.3.2. Back-end Capabilities 44
4.3.3. Reverse Engineering/Maintenance Capabilities 44

4.4. CASE Products Capabilities 44
5. Summary 50

V. THE SMALL ORGANIZATION DEVELOPMENT ENVIRONMENT 51
1. Introduction 51
2. The Small Organization Model 51

2.1. Organization 52
2.2. Personnel Responsibilities 52
2.3. Functional Responsibilities 54

3. Difficulties in a Small Organization 55
3.1. Limited Personnel 55

3.1.1. Limited Overlap of Functional Responsibilities 55
3.1.2. Limited Depth of Technical Knowledge 55
3.1.3. Shared Software Engineering Responsibilities 56
3.1.4. Heavy Maintenance Workload 56
3.1.5. Backlog of Application Development 57

3.2. Informal Development Attitudes 57
3.2.1. Poorly Enforced Development Practices 58
3.2.2. Uncompleted Projects 59
3.2.3. Poor Documentation 59

4. CASE Tool Requirements of a Small Organization 60
4. 1. Front-End CASE Tools 60
4.2. Back-End CASE Tools 60
4.3. Reverse Engineering/Maintenance CASE Tools 61
4.4. Project Management CASE Tools 61

5. Summary 61

VI. INDUSTRY SURVEY 63
1. Introduction 63
2. Survey Methodology 63

iv

3. Results 65
3.1. Organization Composition 66

3.1.1. Organization Size 66
3.1.2. Software Project Characteristics 68
3.1.3. Organization Software Development Practices 68

3.2. Use of CASE Tools in General 69
3.3. Use of Specific CASE Tools 73
3.4. Additional Comments Received 73

3.4.1. Overall System Capabilities 75
3.4.2. Project Management Capabilities 75
3.4.3. Front-end Capabilities 76
3.4.4. Back-end Capabilities 76
3.4.5. Reverse Engineering/Maintenance Capabilities 76

VII. CONCLUSIONS 77
1. Findings 77
2. A Comment Concerning Future CASE Tools 79
3. Future Research 79

LITERATURE CITED 81

APPENDIXES: 84
APPENDIX A. VENDOR CONTACTS 85
APPENDIX B. SAMPLE SURVEY QUESTIONNAIRE 88
APPENDIX C. SURVEY DATA 94

V

LIST OF TABLES

TABLE 1 Project Management Tools. 26

TABLE 2 Requirements Definition and Analysis Tools. 27

TABLE 3 Design Tools. 28

TABLE 4 Coding Tools. 29

TABLE 5 Testing Tools. 30

TABLE 6 Maintenance Tools. 31

TABLE 7 CASE Products Capabilities Matrix. 45

TABLE 8 Questionnaire Distribution. 65

TABLE 9 Combined Results of Opinions Provided for All CASE Tools. 73

TABLE 10 Response Averages for the Individual CASE Tools. 74

vi

LIST OF FIGURES

FIGURE 1 Hardware/Software Cost Trends. 5

FIGURE 2 Components of a Software Development Methodology. 13

FIGURE 3 Classic "Waterfall" Model Life-Cycle. 14

FIGURE 4 Prototype Model Life-Cycle. 17

FIGURE 5 Umbrella of Software Development Tools. 25

FIGURE 6a Categories of Software Development Tools. 32

FIGURE 6b Categories of Software Development Tools (Revised). 33

FIGURE 7 Sample ProKit*Workbench Data Flow Diagram. 37

FIGURE 8 Sample RECODER Structure Chart. 39

FIGURE 9 Sample Power Tools Leveled Set of Data Flow Diagrams. 41

FIGURE 10 Sample Power Tools Data Flow Diagram with Consistency and
Balance Reports. 42

FIGURE 11 Sample Power Tools State Transition Diagram. 43

FIGURE 12 Reported Sizes of the Software Development Groups. 67

FIGURE 13 Average Composition of the Software Development Group. 68

FIGURE 14 Level of Organizational Software Development Formalisms. 69

FIGURE 15 Recommendation for the Use of CASE Tools by Small
Organizations. 70

FIGURE 16 Amount of Personnel Who Use the CASE Tools. 71

FIGURE 17 Modifications to the Organizations Caused by Installing the
CASE Tools. 71

FIGURE 18 Phases in Which the CASE Tools are Used. 72

vii

A REVIEW OF THE SUITABILITY OF AVAILABLE COMPUTER AIDED
SOFTWARE ENGINEERING (CASE) TOOLS FOR THE SMALL SOFTWARE

DEVELOPMENT ENVIRONMENT

by

Marc L. Sims

An Abstract

Of a thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science in Computer Engineering

in the Department of Computer Science & Engineering in
the University of South Florida

December 1988

Major Professor: W. Clark Naylor, Ph.D.

viii

This research informally investigates the use of Computer Aided Software Engineering

(CASE) tools by a small software development organization. These tools are heralded as

being productivity enhancers for software development personnel. Most of the literature

discusses the generic use of this new generation of software development tools. This

research effort focuses on the appropriateness of using these tools by the small software

development organizations consisting of less than seven personnel. Provided in this thesis

is a brief presentation of the software engineering discipline and descriptions of the CASE

family of tools along with a discussion of 33 specific tools. A small software development

organization model is provided and its areas of concen- are discussed. This research also

performed a survey of users of current CASE products and the results from the 76

respondents are presented.

Abstract approved: L) 2
Major Professor: W. Clark br, Ph.D.

Associate Professor,
Computer Science & Engineering

//- O- -

Date of Approval

ix

L1

L INTRODUCTION

"Where shall I begin, please your Majesty?" he asked. "Begin at the beginning," the King
said gravely, "and so on till you come to the end: then stop."

Lewis Carroll: Through the Looking-Glass

1. Background.

The cost of producing computer software continues to increase. It has become by far

the most expensive portion of most current automated projects. When the cost of

maintaining this software is identified for the entire life of the project, we find that the

software expense can become as much as 80% of the total system cost.

The software crisis was identified in the late sixties and is still with us. In fact recent

studies reveal that the backlog of software projects often exceeds 3-4 years. We have more

software developers today, but we also have a much greater demand for additional

software. With the proliferation of the new generation of microcomputers, and greater

dependency on automated support by every faction within the corporate world and

government agencies, there is simply more software required. Instead of an easing of the

much discussed software crisis, it is instead becoming more acute. Because of this

tremendous demand for software, extensive research has taken place to improve computer

programmer productivity. A plethora of methodologies, tools and management techniques

is described in the current literature. Additionally, many vendors have produced tools and

productivity aids that are advertised to provide tremendous improvements. These tools are

being provided to assist the software engineers create code better, faster and cheaper.

Recently a new wave of computer software development tools has been created. They

are called Computer Aided Software Engineering (CASE) tools. These new tools have

2

been heralded by many professionals and discounted by others as another over-hyped

marketing ploy. The true usefulness and capabilities of these CASE tools can only be

determined after they have been utilized by software engineers. It is clear that the current

generation of CASE tools possesses promise and demands the attention of both the

software development professionals and the academic community. Only after rigorous

review and practical experience may the true capabilities of the new CASE tools be

identified.

2. Statement of the Problem.

There appears to be an overwhelming consensus in the literature that installing the

available Computer Aided Software Engineering (CASE) tools in large organizations is

appropriate. However there is little discussion of the use of these CASE tools by small

software development organizations. The small software development organization has

special concerns such as limited personnel resources and management practices that are

peculiar to the smaller sized organization.

The purpose of this research is to attempt to identify the special concerns and

requirements of a small organization and to evaluate whether the current generation of

CASE tools is effective for their use.

3. Research Objectives.

This research will first identify a small software development organization model. This

model will be used to identify the special requirements of a small organization. This

research will then use this model to evaluate the potential suitability of commercially

available CASE products. This research does not evaluate the CASE products with the

intent to recommend the purchase of any product or group of products. An excellent

discussion of how to select an individual CASE product is provided by Edwards

[Edwa881. He provides a methodology to quantify the customer's requirements which are

3

then used in the selection process.

The aim of this research is to identify a set of requirements for the small organization

model and perform a review of the existing CASE products for their suitability to satisfy

those requirements as a class of tool. It will also identify potential enhancements to

existing CASE tools that would be responsive to the small organization.

4. Methodology.

This research did not restrict the hardware environment required by the CASE tools so

that we would be able to review the largest number of products. Historically, it is simply a

matter of time before a good application or capability is transported from the original

environment to a new one if there is sufficient demand. The organization model was

intentionally made small to ensure that the survey results would apply to the majority of

organizations. If the CASE products are appropriate for this model then they should also

be appropriate for larger sized organizations.

The methodology in this research consisted of the following: a literature search of

software engineering history, practices, development tools and methodologies was

performed and a selection of representative commercial CASE products was reviewed.

Product literature, product documentation, demonstrations were reviewed and discussions

with vendor representatives were held. Finally software engineering professionals who

have used representative CASE products were surveyed. This survey requested the

software engineer's opinions concerning the use of their specific CASE tool and also the

use of the general class of CASE tools by the small organizations. Follow-up interviews

were conducted with selected respondents to obtain additional information and to ensure

that the results were being correctly interpreted.

4

IL THE SOFTWARE CRISIS

To be fair, I must say that although the compiler didn't work, it was easy to use

Karen Underwood: CHIPS, January 1987

What is meant by the term software crisis ? Does it still exist? Should we as software

engineers be concerned? Is there anything we can do about it? This chapter provides a

brief historical background of what is commonly referred to as the software crisis. It will

then identify the current status and provide some projections for the future.

1. Historical Perspective.

The first public recognition of the existence of a software crisis is attributed to the

International Conference on Software Engineering convened at Garmish, West Germany in

1968 [Naur76I. The term software crisis has since been used by software development

professionals to identify any perceived difficulty relating to writing computer software.

Authors and vendors promoting their ideas and products are quick to announce that their

solution corrects the software crisis.

The original problems that were identified at the conference in 1968 consisted of three

areas of concern. These were the design, production and service of software. The design

issues were related to the design criteria and the techniques of good design implementation.

The production area consisted of the technical aspects of actually creating the code such as

problems of scale, planning, personnel factors and tools. The final area dealing with

service was concerned with issues relating to timing and frequency of software releases,

distribution, system testinglevaluation, maintenance and documentation.

5

Over time, different authors and software professionals have added to the

understanding of what are the fundamental causes of the software crisis. A result of the

software crisis has been the problem of having a backlog of applications. Computer

programming has long been considered an imprecise "art". Because of this, most

programmers in the past did not have rigorous development formalisms to use but instead

would write code "on the fly". A minority of these programmers were truly artists and

were exceptional, however, most of the programmers suffered from a lack of precisely

identified development procedures which contributed to the crisis.

In 1973, Boehm [Boeh73] documented the state of the software crisis by identifying

some of the factors found to cause problems in developing computer systems. He

identified that software repeatedly is the subsystem of a project that most often delayed its

completion and was also the most difficult to gauge and properly control. Figure 1 is the

hardware/software cost trends graph he presented. This graph illustrates that the cost of

software as a percentage of the cost of the entire effort was less than 20% in 1955 but had

grown to approximately 75% by 1972.

100

80 Hardw=

0

S60

0
40

20

0
1955 1970 1985

Figure 1 Hardware/software cost trends.

6

The trend of rising software costs is what focused the discussion of the software crisis.

Project managers were now facing the reality of software being the major project expense.

While the hardware was the overwhelming expense, managers tended to overlook software

development inaccuracies and their associated problems. However in the late sixties and

early seventies, the proportional cost of software had risen to such a level that management

was forced to focus its attention on the software development problems and related

productivity issues. This led to a determined effort to transform the "art" of programming

into the science of computer programming by formulating a new discipline called software

engineering. This was the first attempt to identify and introduce the solid engineering

principles of rigorous scientific methodologies in order to produce more efficient, reliable

software.

Dijkstra [Dijk72] provided his insights concerning this new attention to the software

development practices during his presentation lecture while accepting his 1972 ACM

Turing Award.

as long as machines were the largest item on the budget, the
programming profession could get away with its clumsy
techniques; but that umbrella will fold very rapidly

Dijkstra went on to project that as the programming profession is able to solve the

programming problems of that day, that the bigger, better, faster machines of the future

will allow us to solve the larger applications that could not even be attempted in 1972. In

this manner the software crisis will not only continue but in fact expand.

It is significant that the actual costs of software were not sharply increasing. Instead the

proportional cost of software in relation to the cost of hardware was rising. This was due

in large part to the rapidly decreasing prices of computer hardware. With hardware

relatively inexpensive, the steadily rising prices of software received the focus of the

industry's attention. As a result, structured programming techniques, rigorous program

design efforts, documentation and improved software development practices became

7

popular with industry. These improved development methods gained favor and

prominence within industry since they had the beneficial side effect of increasing

programmer productivity thereby reducing software expenses.

2. Current Status.

Presently, studies reveal that Boehm's projections of 1973 were indeed prophetic since

software costs currently represent an average cost in excess of 80% of total project costs.

Additionally, the backlog of automated projects can approach 3-4 years in some

organizations [Char76].

Todays focus on the software crisis consists of three major areas. Pressman [Pres87]

explains that the following are the current problems posed by the software crisis.

The software crisis is characterized by many problems but managers
responsible for software development concentrate on the "bottom line"
issues: (1) schedule and cost estimates are often grossly inaccurate; (2)
the "productivity" of software people hasn't kept pace with the demand
for their services; and (3) the quality of software is sometimes less than
adequate.

Pressman has accurately stated that the three principle problems all relate to the "bottom

line" of software cost which is the most important to industry. These consist of the direct

production costs as they relate to programmer productivity and also the deferred costs of

maintenance. The goal of eliminating the software crisis is to generate more software with

less expense, thereby increasing industry's profit.

3. Future Trends.

It is extremely difficult to project accurately what will happen to the backlog of software

projects or identify improvements that will be made in developing software. It is clear

however that continued research is being performed by industry and the academic

community. The formation of the Software Engineering Institute (SEI) which was

8

sponsored by the Department of Defense (DOD) at Carnegie Mellon University in 1985 is a

prime example of trying to bring the software crisis under control.

Projections identify that the costs of software in relation to hardware will continue to

grow. In May 1985, Lieutenant Colonel Ward, Office of the Secretary of Defense, in his

keynote address [Ward86], stated that the United States was lacking 50-100,000 software

professionals and that by 1990 the shortage will grow to over 1 million. He also projected

that the costs of the military tactical software, excluding business software, will increase

from $10 billion in 1985 to $30 billion in 1990.

It is easy to locate precise descriptions of the problems associated with the software

crisis. Numerous authors inform us that software costs too much, is not reliable, and that

we have a large backlog of software programs still waiting to be written. What is much

more difficult is to implement solutions to these problems. Therefore the charter for all

software engineers is to aggressively seek improvements in the software development

methodologies to help reduce the crisis of the future. This thesis will attempt to advance

this cause by investigating a category of software development tools that may help relieve

these problems.

9

IH. SOFTWARE ENGINEERING

War is not, as some seem to suppose, a mere game of chance. Its principles constitute one
of the most intricate of modern sciences; and the general who understands the art of rightly
applying its rules, and possesses the means of carrying out its precepts, may be morally

certain of success

Major General H. W. Halleck, USA, 1846

For twenty years, the software industry and academic community have sponsored

conferences and seminars to discuss and promote the software engineering discipline.

Indeed, two of the foremost computer science professional societies publish journals

dedicated to software engineering. The Institute of Electrical and Electronic Engineers, Inc.

(IEEE) has published the Transactions on Software Engineering since 1975. The Special

Interest Group on Software (SIGSOFT) of the Association of Computing Machinery

(ACM) has published the Software Engineering Notes (SEN) since 1976. The use of the

software engineering discipline is arguably the most common approach identified to

overcome the software crisis. The software engineering discipline is a result of the

evolution from when programming a computer was considered an art form rather that the

application of scientific practices.

Early authors were torn between the process of writing programs being an artistic

creation or a science. Knuth [Knut73] in fact entitled his reference texts The Art of

Computer Programming. He described programming a computer as "a programmer's

craft" and that it "can be an asthetic experience much like composing poetry or music".

Knuth in his 1974 ACM Turing Award lecture [Knut74] he explained why he used the term

"art" rather than "science" for his titles. He stated that

10

Science is the knowledge which we understand so well that we can teach it
to a computer; and if we don't fully understand something, it is an art to
deal with it.

He went on say that the "process of going from an art, to a science means that we learn

how to automate something".

The material in Knuth's works while labeled "art" can not be considered light reading.

However, the careful implementation of his ideas result in the creation of programs that

could be judged artistic. This conflict was prevalent in the seventies. To be a good

programmer required capabilities of a true artisan. But due to the software crisis, the

industry had to generate a great deal of code and most programmers did not have Knuth's

insights to the beauty and "art" of computer programming. They were technicians trying

to write good code as quickly as possible. From this situation, the new discipline of

software engineering was born. This chapter will provide a very brief overview of

software engineering. It will then identify and briefly explain software development

methodologies and also three software design techniques.

1. Definition.

Many definitions of software engineering exist. Bauer [Pres87] provided the following

definition at the first major conference that dealt with software engineering.

The establishment and use of sound engineering principles in order to obtain
economically, software that is reliable and works efficiently on real
machines.

In 1976, Boehm [Boeh76l refined the above definition of software engineering to

specifically include software design and documentation.

11

The practical application of scientific knowledge in the design and
construction of computer programs and the associated documentation
required to develop, operate and maintain them.

Boehm felt that previous definitions did not sufficiently cover the entire software

life-cycle. Boehm specifically included "design" in his definition to cover the critical aspect

of software development that was often slighted and he also included "software

maintenance" to cover the software support required to maintain the software after its initial

delivery.

Currently, even textbooks used in introduction to computer science courses discuss the

software engineering discipline. In the Brookshear text [Broo85], the author states that

"the software development process is called software engineering". He goes on to state

that it entails such subjects as "personnel management, equipment management, system

structure, and design methodologies". It is difficult to find a more encompassing definition

than this one. This reflects the tendency to include all things that could possibly have

anything to do with software development as software engineering. We would like to offer

a little more restrictive definition.

Software Engineering is the scientific application of formally
defined methods and procedures to develop and support reliable,
economical and easily maintainable computer software and
associated documentation such that these methods and procedures
are precise, reproducible and understandable.

Three main points of the above definition should be explained. The first point concerns

the "scientific application of formally defined methods and procedures". These methods

and procedures must be formally defined so that they are transferable from one

environment to another. They must be precisely applied in a scientific manner in that they

can not be haphazardly or partially applied. The second point is that these methods are to

be used "to develop and support reliable, economical and easily maintainable" software and

documentation. Foremost, the software should be reliable. It should do what is intended.

12

It should also be economical in design, cost and resource efficiencies. The software must

also be integrated into the maintenance phase. Since extensive efforts are performed to

maintain delivered software, care must be taken to "build in" good maintenance capabilities.

Finally, these methods and procedures need to be "precise, reproducible and

understandable". They should not be ambiguous to the programmers and they also need to

be reproducible so that they can be scientifically taught and applied. They must certainly be

understandable so that they can be effectively used by all software development technicians

and not only by an elite group of enlightened personnel. They must be available to all

personnel and in order to accomplish this, the methodologies must be easily

understandable.

2. Software Development Methodologies.

As we have seen in the previous section, software engineering consists of the scientific

application of formal software development methodologies. It is now time to more fully

identify these methodologies. Wasserman [Wass82] presented his ideas about software

development methodologies during the 1982 International Federation of Information

Processing (IFIP) Working Group 8.1 Working Conference on Automated Tools for

Information Systems Design and Development. Figure 2 illustrates what these

methodologies contain.

Wasserman explains that the software development methodology is the heart of the

software development environment. The software development methodology is the set of

formal procedures that are used to develop software. This methodology according to

Wasserman actually consists of three major areas; management procedures, technical

methods and automated tools. The management procedures can be considered the "what"

of software development which specify which actions are to be taken in the life-cycle.

They also may identify when and how reviews are to be conducted along with coding,

13

Management|

Select Procedures Provide
Automated Pc u I Visible

Tools Suu u e

Provide N Coordinate,Reports Guide

Figure 2 Components of a software development methodology.

systematic testing, and software configuration management". These can be considered the

"how" of developing software. Finally, the automated tools assist both software

engineering technicians in generating the actual design, code, testing and maintenance

functions in addition to providing needed management support such as configuration

management, reports and other controlling functions. As illustrated in Figure 2, the

software development methodology consists of all three subfunctions all tightly coupled.

We will next discuss three of the significant software development methodologies.

2.1. Waterfall: The Classic Model.

The classic "waterfall" model of the software development life-cycle is the oldest and is

widely discussed by a number of authors. Variations of it are used throughout the world

including the Department of Defense [DOD881. There is not a consensus opinion of the

14

particular phases that exist within the model. However, Pressman [Pres87] provides a

representative "waterfall" model life-cycle paradigm. Figure 3 identifies the six phases of

his software development model. The name of this model is apparent due to the waterfall

appearance of the process flow from top left to bottom right.

System

Fngineerf d eAnalysisT ._

~Design
----(Code

~Maintenance

Figure 3 Classic "waterfall" model life-cycle.

Each phase of the life-cycle contains within it a validation or verification step that

ensures that the project is correct. Boehm [Boeh8la] informally explained that the

validation process answered the question "are we building the right product?" while the

verification process answers the question "are we building the product right?" If the output

from any phase is incorrect, then the model returns to the appropriate preceding phase for

corrective action. These feedback loops are denoted by the flow arrows in the diagram

looping back up the process chain.

The system engineering phase is concerned with discovering how the software product

will fit into the overall system environment to include impact by other software, hardware

and personnel. An example would be if the customer wanted to add a billing program to an

existing business system. The software engineer would then perform an analysis of how

this new program would interact with the existing system. Would the hardware have

sufficient capacity? Will there be interfaces with other computer systems or personnel?

This phase also includes the requirements analysis where approval is provided to begin the

15

project once it has been verified as being necessary. Approval is then given, and the

process proceeds to the next phase.

The analysis phase concentrates on the software requirements. This is where the

customer and software engineer interact and both groups understand what is being

requested and what the delivered system's functional capabilities will include. The

validation of this phase is critical and should not be overlooked or neglected by the

software engineer. It is easier to design a system when the developer knows what the user

desires. Ofte,,, however, the customer does not know what he wants. At this phase, the

customers are not briefed on how the software will operate but instead will be briefed about

"what" the software will do.

The design phase may actually consist of several levels of design. It will identify the

high level capabilities and operation of the software. It may also contain the lower level

details of the software execution. Usually this phase should be accomplished with the

senior software engineers on the design team and a few of the more knowledgeable

customers. The "how" of the software operation design is identified during this phase and

is of no legitimate concern to the customers. Customer involvement should be limited to

answering questions concerning the interpretation of their requirements.

The coding phase is the implementation of the design into the computer environment.

This phase is usually performed by the more junior personnel since the more complex

design work has already been accomplished. Verification of this phase typically consists of

desk checking by senior software engineers and structured walk-throughs of the software

design by management personnel.

Testing is performed next and will be performed at different levels for distinct

purposes. One type of testing will ensure that the internals of the code works correctly.

This is referred to as unit or component testing. Another type of testing is the system or

integration testing where the entire system operation is verified. Additionally, there is

usually some acceptance testing performed by the customer prior to delivery. The

16

verification process for this phase usually consists of a test report.

The final phase is the maintenance phase which begins once the product is delivered

and lasts for the remaining life of the system. This phase will perform the corrective

repairs, customer enhancements and modifications to the software as required for hardware

or software environmental changes. It is significant that this phase will also include all of

the previous phase activities to some level and is usually the phase that the most manpower

is expended for most projects.

As Figure 3 illustrates, feedback is provided from each successive phase back to the

earlier ones. This is required to correct identified discrepancies. Each phase contains a

verification or validation step that ensures that indeed what is produced matches what is

desired from the previous phases.

The approval to proceed from one phase to the next varies with the size of the project,

organization and type of activity. If the project is a small application, the team leader may

provide his or her verbal approval to the software engineer to proceed. If it is a large

complex military application being developed by civilian contractors, a document of several

hundred pages and a formal approving review may be required. The "waterfall" method

has the flexibility to be tailored to each application and is useful for either a small or large

software project.

The "waterfall" approach is very rigorous and most effective when the requirements are

stable and do not change during development. However, it begins to break down and

becomes difficult to manage when modifications are desired during the project. Because

the customer does not see the system until the end of the development life-cycle, alternative

models have been developed.

2.2. Prototyping: A Rapid Alternative.

Because of the inherent problems experienced with the "waterfall" model, the

prototyping model was developed. Pressman [Pres87] has provided a diagram (Figure 4)

17

that defines a five phase prototyping life-cycle. This life-cycle is similar to the "waterfall"

model in that requirements are still gathered and a design is performed. However, these

phases are abbreviated versions.

SRequirements '
gathering. "Quick

de Build

u men~s meEngineer
~product ,

Figure 4 Prototype model life-cycle.

The first four phases will be repeated each time producing a more mature version of the

system with more detailed refinements until the final system is created. At that time , the

software engineer will produce the finished product.

The "first system" or initial prototype will be a simplified version of what the customer

thinks he wants and that the developers are able to provide. In this manner, a version of

the system is rapidly created that can be evaluated by both the customers and software

engineers for deficiencies which will be corrected in the subsequent versions. The benefits

of this model are that developers can create "something" very quickly so that the customers

can see what the system will look like. This allows for early discovery of problems with

the design or a chance to identify missing detils. The software engineer can then correct

the problems well before the normal delivery date. The prototype does not necessarily need

to be coded but instead could be a "paper" prototype which merely illustrates the screen

displays or could be a demonstration of the screens with out any "real" code to support

them. It is highly recommended that a draft copy of the users manual be provided to the

18

customer with the first prototype demonstration.

This development model is well suited for applications where all of the information is

not available at the start of the project or where the customers are not sure about exactly

what capabilities they would like the system to possess.

A shortfall of this model is that the customer who sees a prototype that is apparently

working may exert undo pressure for immediate delivery. This may cause shortcuts to be

taken by the developers and thereby cause future problems with the delivered system since

software engineering procedures may not have been completed. Another potential problem

area is that the developer may take some inappropriate shortcuts to field a quick prototype

thinking that they will be removed or overcome later. Later, the developer has grown so

familiar and comfortable with these compromises that they remain in the system upon

delivery. This model appears to be best suited for applications that are not highly complex

in nature so that they can be quickly fielded once approval is provided by the customers.

2.3. Fourth Generation Techniques: Model of the Future?

Todays fourth generation techniques (4GT) are identified as a potential model to

quickly develop many structured applications. The 4GT paradigm focuses on the capability

to generate applications from a near natural language context using a fourth generation

computer language. This model consists of first identifying the requirements of the system

and then generating the software directly using the fourth generation application generator.

An example would be a business application such as creating a new weekly sales report

using the dBase III Database Management System (DBMS) language.

The customer would first identify what is required and then the developer would

construct "super" high level instructions that would in turn generate the required source

code. This function acts as an ultra high level set of macro instructions. The difficulty is

that all of the management and "transitional activities" would still have to be accomplished.

It appears that the 4GT paradigm at the present time is highly restricted to simple business

19

applications and is not responsive to large or complex efforts.

3. Software Design Techniques.

All software development life-cycle paradigms include a software design phase. No

matter the paradigm, good design of the software is critical to the successful completion of

any project. There has been considerable effort in attempting to create the "perfect" design

technique. What can be said is that there are many to choose from and the proper one to

use depends upon the application being developed. Many software development

organizations maintain proficiency with several different techniques so that they can utilize

the most appropriate one for each project. The different software design techniques can be

classified in three general categories. They consist of process-oriented design,

data-structure design and object-oriented development techniques. It is our intent to briefly

explain the characteristics of each design type and list some of the known techniques of that

category. References are provided to the interested reader for additional information.

3.1. Process-Oriented Design.

This design technique, as the name implies, is oriented toward developing the software

design as it relates to the processes or functions of the software. This design technique is

commonly known as top-down structured design. These techniques were first identified in

the late sixties and were used for structured programming design efforts. Dijkstra is

credited with being one of the leaders in the field of structured programming. His paper

[Dijk65] is considered by many to be the keynote to the succeeding revolution of using

structured programming. Dijkstra clearly explained how humans are limited in the scope

and complexity of their thoughts and can not handle highly complex matters of design. He

proposed that programmers use the ancient method of "Divide et impera (Divide and rule)".

He advocated that a programmer should perform the following steps when developing

software.

20
- he makes complete specifications of the individual parts

. he satisfies himself that the total problem is solved provided he had at
his disposal program parts meeting the various specifications

- he constructs the individual parts, satisfying the specifications, but
independent of one another and the further context in which they will be
used

The above ideas clearly identify the stepwise methodology of functional decomposition

that all process-oriented design techniques use. Since Dijkstra's presentation, the modem

era of structured programming techniques and design have matured. Wirth [Wirt71],

Parnas [Parn72], Hoare [Hoar81] and many others have expanded on the subject resulting

in a keen awareness within the software industry.

The common approach with this technique is to functionally decompose the system

from the top-level in a divide and conquer approach until the complete system is clearly

defined in easily understandable modules. The principle differences between the individual

process-oriented design techniques appear to be how the system is decomposed into

modules and the different methods of graphic representations.

The following are samples of process-oriented design approaches. Hierarchy, plus

Input, Process, Output (HIPO) which was developed by IBM [Stay76]. Structured Design

(SD) was introduced in the mid-seventies and is credited principally to Larry Constantine

[Your79]. Edward Yourdon is also credited as being a major contributor to the top-down

design technique and is one of the pioneers of teaching the technique to the software

industry. He continues to be a popular and well read author. Structured Analysis (SA)

evolved from the Structured Design techniques in the late seventies [Dema79] and remains

very similar to Structured Design and uses many of the same process flow representations.

3.2. Data-Structure Design.

The second major category of design techniques focuses on the data representations.

This technique first identifies the different data that the system will contain. In this respect,

21

the system is data driven. The modules are identified as they transform the data. This

approach also makes extensive use of the top-down approach but instead concentrates on

how the data flows. Specific methods consist of Warnier Diagrams that were developed by

Jean Warnier in the early seventies [Warn74] and later extended by Ken Orr [Orr77]. This

technique is now known as the Wamier-Orr methodology and is also called Data Structured

Systems Development (DSSD) methodology. Another data oriented technique was

developed by Michael Jackson in the early seventies [Jack83] and is referred to as the

Jackson design technique.

3.3. Object-Oriented Design.

This final approach was created as a result of shortfalls with both of the preceding

techniques. This approach focuses on objects as being the key element in software

computations. Booch [Booc87] described this approach and presented his notation for

identif! ing objects and their relationships which is commonly used. The object-oriented

technique utilizes the information hiding process where each model contains its own copy

of its local data. This technique is different from the proceeding ones in that these objects

have common characteristics with all other objects of the same class. It is this relationship

which provides the strength of this technique. The objects in a common class inherit

attributes and also processing algorithms.

A shortcoming of this technique is that it is only a partial life-cycle which is applicable

for only the design and implementation phases. This necessitates that another life-cycle

model be used for the other phases.

4. Summary.

Presently, we have college courses and training seminars which teach the software

engineering discipline. Entire texts have been dedicated to teaching the formalisms of

software engineering. It is uncommon to find a programming textbook that does not at

22

least briefly discuss the topic. Concerned software professionals have worked diligently to

propagate good engineering practices as they concern software development and

maintenance in order to assist programmers to efficiently and economically create software

products. It is indeed promising that today's students are being exposed early in their

studies to good software engineering methods and practices. They are the future

programmers and managers that will be called upon to eliminate the backlog of programs.

Today, we tend to take for granted the traditional "waterfall" development life-cycle

model and structured programming techniques. However, it was not long ago that we did

not even have this roadmap to assist us in writing programs. Now we have a virtual

cornucopia of methods and techniques available for our use. The current trend of using

Computer Aided Software Engineering (CASE) tools is yet another effort which provides

automated support to the modern programmers which is heralded as improving

programmer productivity. We are indeed trying to automate the "art" of computer

programming which was Knuth's suggestion of how an art evolved into a science.

23

IV. AN OVERVIEW OF COMPUTER AIDED SOFTWARE
ENGINEERING (CASE) SOFTWARE DEVELOPMENT TOOLS

"When I use a word," Humpty Dumpty said, in a rather scornful tone. "It means just what
I choose it to mean --- neither more nor less."

Lewis Carroll: Through the Looking-Glass

1. Introduction.

It is no small task to define what are computer aided software engineering (CASE)

tools. Albeit it is not from a lack of discussion in the trade journals or literature. It is

certainly a very popular topic of the software industry. The difficulty is one of agreement.

There has not been a consensus of terms and this has caused some confusion. This chapter

will endeavor to explain the current state of the CASE tool environment. Appendix A

contains a list of the 33 vendors of CASE products reviewed for this research.

Training seminars, trade shows and conferences dedicated to the topic of CASE are

held in every major city in the country. Newsletters are published by vendors and experts

in the field that are dedicated to the topic of CASE. What is CASE? CASE can generally

be thought of as being those software products that assist the programmers in developing

software and its related support material such as documentation.

The CASE label originally was applied to microcomputer or workstation software but

has since grown to include mainframe support software and project support tools. It would

appear that since "CASE" is one of the current buzzwords of the industry, that there is no

lack of vendors quick to claim that their software is actually a "CASE" tool. Most times the

vendor is correct which only adds to the industry's confusion.

It is appropriate to first describe the tools that are useful within the software

development life-cycle before specifically describing the CASE family of tools. This

24

chapter will provide a very brief overview of the current CASE tools available. It is not our

intent to provide a comprehensive listing of each CASE product available. It would be

impossible to attempt to identify them all --- much less provide a discussion. However,

this chapter will provide a description of potential tools that are helpful for the software

development phases described in the previous chapter.

The phases that we will use for our discussion will be a modified version of

Pressman's "waterfall" model. The tools we identify would also be helpful in supporting

any of the modem software development paradigms. This chapter will then identify the

different types of tools that are labeled as CASE and how they relate to these phases. A

sample of the selected CASE tools ,vill then be discussed in more detail in order to provide

the reader an understanding of the capabilities of those particular types of CASE products.

2. Tools for the Software Development Environment.

Before we describe the specific CASE tools, it is appropriate to briefly identify the tools

and programming aids useful for the complete life-cycle. After constructing this

foundation, we will then be able to present details of how the CASE tools relate to the

software development life-cycle. This section will generically identify tools that are useful

for each phase of a modified version of the classic "waterfall" software development

model. The "waterfall" model is appropriate for discussion since all of the other software

development paradigms will use a subset of this model to some degree. The "waterfall"

model is also widely used and understood by most software engineers and therefore

provides a suitable platform for discussion.

Figure 5 illustrates the six categories of software development tools. This includes a

category of software development tools for project management activities that are used for

the entire life of the project. This project management category is identified in Figure 5 by

the functional umbrella which provides protection for the development effort and is used

throughout the entire life-cycle.

25

(Design

(Tostrq

Figure 5 Umbrella of software development tools.

A general description of each category of software tool is provided in the following

sections. These sections also contains tables which list some of the representative tools of

each category. A mnemonic code is included for each of the tools in these tables which will

be referenced in later chapters. Gibson [Gib881, Glass [Glas82] and Voelcker [Voel88]

provided the majority of the information for these tables. It is difficult to identify some of

the tools as belonging to one phase since many of the tools are clearly used in several

phases.

2.1. Project Management Tools.

The tools used in this phase are identified in Table 1 and are those normally associated

with management responsibilities. However, this category also contains tools that are

26

required by the software engineer responsible for the entire life-cycle. These tools assist

the project leaders and software engineers to document, audit, monitor, and control the

Table 1 Project management tools.

T0I Function

Text Editor (TE) Word Processor, includes spell checker and thesaurus.

Project Tracking/ Breaks down work into tasks, tracks schedules.
Control (PT)

Configuration Management:
Audit Trail (AT) Identifies when and how modifications were made.
Project Permissions (PP) Controls access to software modules.
Baselining (B) Provides version baselining and change control.
Version Control (VC) Controls the version of software being worked on.

Documentation Template (DT) Documentation shells or outlines.

Typesetter (TS) Enables machine readable text to be easily moved to
typesetting device.

File Compare (FC) Compares two files and identifies all differences.

Desk-Top Publishing (DTP) Provides near or full typesetting capabilities at the software
developer's workstation.

Standards Auditor (SA) Checks software for conformance to standards.

Project Library (PL) Contains historical data and explanations of why decisions
were made.

software project. Additionally, configuration management, and project scheduling tools

belong in this category. Also included are those tools that will help monitor the

development effort and store project history data.

2.2. Requirements Definition and Analysis Tools.

We have combined the systems engineering and requirements analysis phases of the

Pressman waterfall model. This phase will require those tools (Table 2) that assist the

project leaders and customers to identify and define the project to be developed. These

27

tools assist management in determining what interfaces may be impacted by the new

project. Requirements tracking is performed to ensure that all of the capabilities required

are included in the subsequent phases.

Table 2 Requirements definition and analysis tools.

Tl Functon

Requirements Tracer (RT) Links software requirements to the documentation and
software elements created.

Requirements Language (RL) Specialized descriptive languages used to describe
systems requirements.

Requirements Illustrators (RI) Graphically illustrates the requirements of the software
and systems as a whole.

Cost Estimator (CE) Estimates the development effort and resources.

Requirements Analyzer (RA) Lists the functions that the system must perform and
models the initial data structures.

Functional Specification Generates functional specifications as a by product.
Generator (FSG)

2.3. Design Tools.

These tools (Table 3) assist the developers perform their design of the software. These

tools tend to be highly flexible and allow the software engineers to quickly change

relationships, and data definitions along with the input and output designs. These tools are

usually heavily dependent on graphic capabilities.

2.4. Coding Tools.

These tools (Table 4) are those that are commonly used by programmers for writing

the source code. They therefore tend to be language dependent. These tools also help the

software engineer analyze program complexity, format the code for readability and also

automate some of the documentation generation.

28

Table 3 Design tools.

Too Functon

Diagrammer (D) Draws pictures, flowcharts of the system organization.
Data Flow Diagrams (DFD)
Structure Charts (SC)
State Diagrams (SD) These are specific diagraming methods.
Entity/Relationship (F/R)
Control Flow Diagrams (CFD)
Process Diagrams (PD)
Data Structured Systems Diagrams (DSSD)
User Defined Icons (UDI)
Customer Defined (CD)

Screen Painter (SP) Macro generation device to quickly create a screen
display. Code will be automatically generated.

Report Generator (RG) Like the screen painter only these generate code for
reports.

Data Dictionary (DD) Lists data elements, cross references and ensures
Consistency Checking (C) consistency among software modules.
Balancing (B)

Control Flow Analyzer (CFA) Maps interactions of programs and modules; ensures
all elements are referenced.

Subsystem and Interface Tracks individual data elements; ensures that modules
Modeler (SM) pass data correctly and consistently.

Data Flow Modeler (DFM) Models the path of data through the system, shows
connections between modules; ensures that no data
goes unreferenced.

Tasking Analyzer (TA) Ensures that parallel tasks in real-time systems are
synchronized.

29

Table 4 Coding tools.

TI~ Function

Code Generator (CG) Creates programs in a standard language automatically
from an input design which is machine readable.

Subroutine Library (SL) Contains code for common functions to be used by all
programmers.

Context Sensitive "Understands" format and syntax of source code being
Editor (CSE) edited, including identifying code syntax errors.

On-line Code Debugger (OD) Shows data during program execution, highlights errors
in expected results.

Context Driven While tracing the source code, this tool will display code
Debugger (CD) that is called via calls or other context switching means.

Code Feedback (CF) Automatically changes specifications and documentation to
reflect code changes during the coding or later phases.

Compiler/Assembler (CA) Compiles or assembles the high level source code into
machine-orientated object modules.

Loader/Linker (LL) Loads and links the software object-level modules
together forming an executable program.

Conditional Compilation (CC)Compiles only the portions of the software that are
identified. This tool provides a mechanism for ignoring
marked portions of code.

Preprocessor/Macro Provides a high level or macro level instruction set for a
Generator (PMG) programming language.

Instruction Level Allows a development computer to execute object codes
Simulator (ILS) of programs written for others.

JCL Generator (JG) Generates Job Control Language instructions required to
execute the software.

Static Code Tester (SCT) Simulate the execution of the code given the initial
variable and system values.

PDL Generator (PDL) Generates pseudo code.

30

2.5. Testing Tools.

These tools (Table 5) are the test generators and monitors used by both the software

engineers and quality assurance personnel. Also very helpful are report writing aids since

this phase is heavily reliant upon producing test reports.

Table 5 Testing tools.

Too Functon

Scripting Tool (ST) Records transactions or conversations between users
and the system, validates test data.

Test Data Generator (TDG) Develops complete sets of data to test all modules and
their interactions.

Test Data Manager (TDM) Tracks relationships between versions of test data and
test conditions.

Interface Simulator (IS) Provides simulation of software interfaces, such as
external devices or program stubs.

Formal Verification Tool (FVT) Assists in developing formal proofs of program
correctness.

Real-time Environment Creates simulated environment to allow test execution
Simulator (RES) real-time embedded software.

2.6. Maintenance Tools.

This phase will use all of the previously identified tools. Depending upon the size and

complexity of the project, extensive use of the additional tools unique to this phase may be

required. These unique tools (Table 6) assist the software engineer to modify the existing

code and perform maintenance. These tools are commonly called reverse engineering

tools. Reverse engineering is when one evaluates a previously created product and works

backwards or in a "reverse" manner to discover the meaning and purpose of previously

developed software.

31

Table 6 Maintenance tools.

TQl Function

Pretty Printer (PP) Formats source code into an identified structure.

Code Restructurer (CR) "Tidies up" existing source code enabling easier
understandability and maintainability.

Global Cross Identifies all modules and documentation elements that
Referencer (GCR) interface with each module and variable in the system.

Design Generator (DG) A "reverse engineering" tool that will back out the design
of existing code that can then be easily understood and
modified.

Disassembler (DA) Produces assembler source code from object code.

Timing/Performance Runs at program execution time to identify areas of poor
Analyzer (TPA) or slow execution.

Documentation Generator Generates documentation directly from existing source code.
(DG)

Structure Chart Generates structure charts from the source code.
Generator (SCG)

Metric Analyzer kM) Measures the complexity of the source code.

Translator (T) Translates the source code from one language to another.

3. CASE Tools Hierarchy.

CASE tools are usually referred to as being in one of the two principle types. The first

type is known as front-end or "upper" CASE while the second type is known as back-end

or "lower" CASE. We would like to suggest that there is a third type that we call the

reverse engineering/maintenance (RE/M) CASE tool. Most of the CASE tools fall into one

of these three category types. In his keynote address at the Ninth Annual Conference on

Applications of CASE Tools hosted by META Systems Inc. in Ann Arbor, Michigan,

Merlyn identified his definition of the three major categories of today's CASE tools

[Merl88] which is provided in Figure 6a. We would suggest that that this figure should be

32

Analsis Progranmin

\ Support .

Figure 6a Categories of software development tools.

revised as illustrated in Figure 6b. This revision shows that there are three major categories

of CASE tools along with an additional group of support tools that we have identified as

project management tools that support the entire environment.

3.1. Front-End CASE Tools.

The front-end or "upper" CASE tools are used in the "front-end" or early phases of

software development. This typically consists of tools that support the first three phases of

the waterfall model. Usually these tools have extensive graphic capabilities since they are

principally used to represent software designs either at the high system level or at the code

level. The tools will create a design document that is then provided to the programmers to

code from. A growing number of products have an automated interface to the coding phase

which is the start of the next category of CASE tools.

33

3.2. Back-End CASE Tools.

The back-end or "lower" CASE tools support the actual generation of code. These

CASE tools support the coding and testing phases. Some of the tools automatically

generate the code from the design of the front-end CASE tools but these are still quite

uncommon. Most of the CASE tools in this category have existed for some time but were

not labeled CASE tools. Nevertheless, that does not diminish the fact that these tools assist

the programmers in generating code. This category of CASE tools is arguably the most

populous group since many of the software development tools have been used for a

considerable amount of time. For example, programmers would be hard pressed to

develop code without a compiler.

34

3.3. Reverse Engineering/Maintenance CASE Tools.

This final category supports the "pure" maintenance functions. By this, we mean that

these functions consist of supporting existing code. We have identified this category as

reverse engineering/maintenance (RE/M). This category is interesting and arguably the

most exciting category of the CASE family of tools. One tool may simply reformat the

existing code in accordance with new standards or procedures. Another tool may generate

a design structure that can be modified which in turn can be input to an automatic code

generator thereby creating new code. Still another capability is to process the existing code

and create a more structured and understandable program. These capabilities translate

directly to monetary savings since they will enable fewer software engineers to maintain far

more source code.

4. CASE Product Descriptions.

This section will briefly describe a sample of the representative CASE products. We

will first describe in some detail a representative front-end CASE tool, a RE/M CASE tool

and finally a CASE tool providing support for the entire life-cycle. These descriptions will

identify some of the major capabilities of these individual products. Every effort has been

made to describe the capabilities that were clearly identified by the product literature,

viewed by product demonstrations or explained by the vendor representative. Additionally,

this section will also provide a matrix of CASE products capabilities.

4.1. ProKit* Workbench.

ProKit*Workbench is a microcomputer based front-end CASE tool that is marketed by

McDonnell Douglas. This system can support multiple concurrent users working on the

same project. This enables programming teams to be able to work on the same effort

independently.

35

4.1.1. Hardware Requirements.

ProKit*Workbench operates on IBM Personal Computers (PC), XT or AT, PS/2

(Models 30, 50, 60 or 80). Additionally, it will also operate on 3270-PC (Models 2, 4 or

6) or other microcomputers which are fully compatible. In addition, the microcomputer

requires 640 KB Random Access Memory (RAM) and also an expanded memory which

supports the Lotus/Intel/Microsoft (LIM) specifications with at at least 512 KB of memory.

McDonnell Douglas provides an expansion board LIM memory enhancer with its software.

A hard disk drive is also required. The vendor also highly recommends the use of a math

co-processor chip and the system should use an Enhanced Graphics Adapter (EGA) or

Video Graphics Array (VGA) monitor. The use of a plotter is also suggested.

4.1.2. Project Management Capabilities.

This tool provides several features that are useful to manage projects. First, it provides

documentation templates or shells that are used to create users manuals, test plans and other

reports used by the software development personnel. A text editor is also included in the

package which performs standard word processing functions and also allows text to be

exported to external files. This tool also provides some configuration management

support. An individual worker, responsible for controlling the development effort, is

assigned the special "project director" user identification number and password.

4.1.3. Front-end Capabilities.

This tool has extensive front-end design capabilities. It contains three major services

that it calls the Analyzer, Data Modeler and the Prototyper. These contain three versions of

design generators or diagramming tools that can be used to translate the strategic business

objectives into a logical model which is then used to generate the system specifications.

ProKit*Workbench utilizes data flow diagrams (DFD) based on Gane-Sarson graphic

conventions and rules. Additionally, it also uses an extended version of Bachman or Chen

36

entity relationship (E/R) diagrams to produce strategic and detailed data models. The

customers are also able to create their own graphic symbols.

ProKit*Workbench uses a fully integrated active data dictionary that stores information

about the processes, relationships, data elements and structures. Using this data

dictionary, error reports such as balancing and consistency checking are generated that

identify missing paths or incorrect data. Documentation elements are also automatically

produced based upon the data stored in the dictionary.

Like all front-end design tools, ProKit*Workbench is heavily graphic oriented and

makes extensive use of the graphic illustrations of the system design. Figure 7 contains a

sample of one of their data flow diagrams that uses the Gane-Sarson conventions. These

diagrams are quickly updated when changes are made by the software developers. The

data dictionary is also automatically updated and when the new diagrams are generated.

We feel that this product is representative of the front-end CASE tools that are currently

available. It appears to provide the features necessary for use by a small sized organization

for the design effort.

4.2. RECODER.

RECODER is a mainframe based reverse engineering/maintenance CASE product

which is marketed by Language Technology. RECODER generates new structured

COBOL source code from existing COBOL programs. INSPECTOR is another related

product that is marketed which augments the RECODER tool. We will briefly describe the

RECODER capabilities and mention those that are provided by INSPECTOR. The product

literature did not specify which specific IBM mainframes are supported.

37

!jai

CDC

IN ar w =

N0

LiLi

cipi

38

4.2.1. Project Management Capabilities.

RECODER provides a text editor and it is also able to automatically generate

documentation based upon the produced source code. The product literature did not

identify any additional project management features.

4.2.2. Reverse Engineering/Maintenance Capabilities.

RECODER is a highly complex tool which translates existing COBOL source code into

structured "cleaned up" code. This is accomplished in a six step process. In these steps,

the original source code is translated into a mathematical form called an abstract syntax tree.

This step defines which character strings in the program count as well formed expressions

and which expressions are equivalent. RECODER then repeatedly scans and reduces the

translated program into a tightly organized structured form. Typically, it takes less than

100 passes to transform the program into an optimal design.

From this new design, RECODER then produces a new structure graph and syntax tree

representing the structured code. Additional passes are then performed to implement local

in-house standards. Finally, a new correctly structured syntax tree is produced, and its

COBOL code generator creates the new source code. Figure 8 illustrates a sample structure

chart created by RECODER.

The INSPECTOR tool is an evaluation device used to determine which programs have

the most promise for processing by RECODER. INSPECTOR produces a report that

identifies the programs complexity value using the McCabe Essential Complexity method.

This RE/M tool is highly sophisticated and is advertised to provide a rapid pay-back for

the cost of the tool due to reduced maintenance costs of maintaining structured code rather

than unstructured code. This tool does not actually modify or enhance the source code or

provide a means of updating the abstract design. Rather, the maintenance programmers are

able to update the newly structured code which is easier to understand and therefore easier

to modify.

39

ALI14AINLINE (037J.4173)

82-PARAGRAPH-9 103190R319)

IC1-HLVJCLUSk-UP (VIOO.R30OI

I G-READ-CUST (II4.RIASI

I I EL-REA0-CUSt (OO.RI591

I Ifl-WRITE-DrC-RtEPORE 101Z.11L2I

F2-*EAO-CUST IDQ2.RI4SI

I I IGI-PARAGRAPH-6 IOzb.R?6I

I IHI-WQIfE-EFTEC I1)24.IZ4)

H2-WRITE-EFTREC-EEIT (0,ROI

g I I GZ-SEARCH-TABLE 0190Q.19)

I I I 3-CHECK-PEPI 1030RI)

I I I IH4-SEARCH-TABLE (04.54)

HS-CHECC-PREFZX-EX)E (3r).Rfl)

IG3-RENT-OETAIL-REC 10SO.SY I

I I IH,-PARAGA&PHT7 (nII.R1II

I I IL-SEARCH-COU4TY-TAILf 10S.Rol)

I IZ-SEAQCH-CIlU.TY-FxIT 49O000)

I4WIFkPI IO100
I-

IIII-1PA.AGIIAP-4 (I).5)11 ... SEE CI.AI13 ?.

I sH-PA~tACRAP4-z (0)T.RITI . SEE CMAYTZ S.

Hi-PARAGRAPH-3 (017.R17) SEP CHARY2 4.

MY-PARAGRAPH f011.417) ... SEE CHART8 Z.

02-PARAGRAPH-S 10II6,RISO)

I H-PARAGRAPH-Z 1017,0R171 ... SEE CHARITf 3.

I I EZ-TUI.-CLOSE-UP 1020.RTI)

t I I Hi-PARAGRAPH-3 (017.51?) ... SEE CHARTO 4.

I g FI-TUI.-CLOSF-UP-EXIT (00.010)

(I-PARAGRAPH-5 (024.5241

I P4-PARAGRAPH-A (D?2.RZZI

I I GS-RITE-COUNTY-REPOOT tOSRS)

Gb-WRIIP-LINE (SI 1.51I I

Figure 8 Sample RECODER structure chart.

40

Language Technology does offer a free Software Portfolio Analysis service. They will

process a sample of the potential customer's COBOL source code and return it for the

customer's review. This trial test is one of their marketing techniques to provide a potential

client an opportunity to judge RECODER's effectiveness.

4.3. Power Tools.

The Power tools series of CASE tools are marketed by ICONIX. They consist of a

complement of CASE tools that operate on the Macintosh family of microcomputers. Six

products are available that can operate either individually in a standalone mode or in a

tightly coupled mode that provides support for the entire software life-cycle.

4.3.1. Front-end Capabilities.

ICONIX provides the FreeFlow and FastTask packages that support the front-end

design effort of the life-cycle. These two products are equivalent but each supports a

different design technique. FreeFlow supports the DeMarco Structured Analysis (SA)

technique and uses data flow diagrams (Figures 9 & 10) and control flow diagrams. The

FastTask package supports the Ward-Mellor and Hatley real-time techniques with state

transition diagrams (Figure 11), state/event and state transition matrices. Either of these

packages will then pass the data through the active data dictionary to the SmartChart

package which translates the functional requirements generated by the design package into

an appropriate software structure. SmartChart will then create structure charts and generate

pseudocode for the system. Built into SmartChart is a language sensitive editor used to

process the pseudocode. Documentation is automatically produced as a byproduct of this

step.

41

C

0 0

E 0 - Q
0 go

(A~ U u

C Cd

LZ

- W)I >
E -

E L)

U / CL

(A 0

00
E A0 L..r i,- I ru

E 4.

0 -VE 4.
E L E) ' ~ u

a ~~"' t

M)0'

0CD

Ml.
L 10 1 / 1 1 1111]1/

42

U- U

.00

C - J

- -C

co 0 CIS 0 0
-V cc L

'D L
C ~ C.) c c a

0C

a 0 0

0

4 .r 0 '- 0 CL

03 0

0 It Q

-L aa 3
L L 0 0~0'

I-~~~U U -a~
wa 0. C) ..- ..

E0 U CL L 0 C-)

0fl > .

0- a

41 El L.)

Dc . 0 (U L
0D4 - L 0.

U-~ L . C - a- an u

U-' n-.i U- w La wLU.

C3>~0) 0. C C C C3

av- C- ri C0

aC- C. C.) 0

43

--- - - -----a

E L -
0

,, ,--

o a

0 m1 0

L °

o o

E

4, , 0

Fo *--

--3C

a)
I-0

0 ,y.-1-

44

4.3.2. Back-end Capabilities.

Implementation is then performed by the programmers using the structure charts

produced in the previous step. These charts are used as the outline and the pseudocode

provides specific guidance. The analysts then write the source code using language

templates furnished by Power Tools which includes ADA, C, FORTRAN, LISP,

Modula-2, Pascal and Prolog. The SmartChart tool does not actually generate the source

code, but is used as an intelligent assistant to the analyst.

4.3.3. Reverse Engineering/Maintenance Capabilities.

Power Tools provides for some maintenance assistance. This consists of using their

Strip utility which automatically generates new PDL listings and structure charts from the

source code comments. This allows maintenance programmers to use these structure charts

and PDL listings as a guide to write new code. This method is helpful as long as the

comments in the source are current.

4.4. CASE Products Capabilities.

Table 7 contains a matrix of the CASE products with some of their capabilities listed. It

is intended to provide the reader with additional details concerning those products. Many

of the details were furnished by Brown [Brow88] and Edwards [Edwa88]. Of the original

54 vendors that were requested to provide information, 33 vendors supplied sufficient data

suitable for inclusion in the table. Of the other 21 vendors, some did not respond or

responded with insufficient detail or else their product was not appropriate for discussion.

The majority of information was obtained from the product literature. This matrix should

not be used for product evaluation or purchase guidance. It is presented to provide the

reader with an appreciation of some of the product capabilities. Additional information

concerning the products may be obtained directly from the vendors. The addresses of the

vendors are supplied in Appendix A.

45

gC -,u . ug

-0 can #di2 0 u

o to

-40 Z

Cu

In) CIO C- CO

Ur

zt
Cu:

<O <

46

u 0 &,)a uag

tb.. t -- 2
.51 8-~

ct ,

z

0~~ 0d d d

zz
0~~~ 0I- 5~U U

47

u
Es

C--

0i e c~

0. IL) 0)

.u z
0 0b0

S.-r

0" u

24 *

0e (5 CA' -

48

0 1 rcw
~ow

o .. Z E- c

IM U UoI G U U

00

CUo "g CCHU"r

Or- 4-,

e, 0 -oc

o> 9 Uo cn4~ U) U

49

ua

ei

~r. R.

UA -'AI

*00

>

50

Table 7 was completed based upon documentation received from the vendors.

Capabilities were not included unless they were specifically identified in the product

literature. Some of these products have capabilities that were not included in the matrix

since the documentation may have stated it in such a way that it was unclear to the author. I

apologize for any inaccuracies or omissions and any errors are the exclusive responsibility

of the author.

5. Summary.

This chapter has provided a short discussion about the tools that are available for use by

the software professional. It should be apparent to the reader that all of the tools identified

within this chapter are CASE tools. They are all useful in software development and are

entitled to be categorized as CASE tools. Historically, the last office in an organization to

automate inexplicably seems to be the computer support office. Engineers have had their

computer aided design tools for quite some time and of course the business community has

dozens of versions of their commonly used applications to choose from. The software

developers have only recently begun to automate their environment to assist their

development efforts. Because of this, the rush is on by vendors to capture the market with

their products. This CASE revolution rivals the one of 20 years ago when structured

programming techniques were first introduced.

We have presented the major categories of CASE tools for the entire life-cycle. The

reader should recognize that the CASE label means different things to different people. For

the purposes of this research, the four categories are the front-end, back-end, reverse

engineering/maintenance and the project management tools.

Having laid the the foundation of what CASE tools are in this chapter, we are now

ready to explore how they may be able to respond to the small organization.

51

V. THE SMALL ORGANIZATION DEVELOPMENT ENVIRONMENT

Ninety percent of the time things will turn out worse than you expect. The other ten
percent of the time you had no right to expect so much.

Augustine's Laws

1. Introduction.

This chapter identifies the CASE tools that are critical to the small software

development environment. These requirements are different from those of a typical large

organization for at least a couple of reasons. First, there is the obvious lack of personnel

which causes certain problems and secondly, there are informal software development

attitudes that may exist in a small shop.

We will first present a small organization model that will be used for illustrative

purposes and further discussion. This model should accurately represent common small

organizations and will be suitable to draw our conclusions. From this model, we will

present topics of concern for the software development that are critical to the small

organization. While large organizations may share these concerns to a degree, these

potential problem areas are critical to the small organization. From these areas of concern,

we will then identify CASE tools that should be considered of prime importance to the

small organization.

2. The Small Organization Model.

It is impossible to attempt to discuss every small organizati In order to discuss the

small organization, it is necessary to present an abstract model that is both understandable

52

and also captures the principle concepts of small organizations. This model should be

germane to all small software development environments even if each of the specifics are

not identical. It is interesting to note that this model is also appropriate to many large

organizations as well. These large organizations usually develop software with a team

concept or structure which will bear a resemblance to our model. Quite often a large

organization logically consists of many small independent units.

2.1 Organization.

Our small organization model consists of up to six software development personnel.

This model includes one project manager or team leader within the group. The project

manager is a "working manager" and the other team members all share in the responsibility

of performing the required quality assurance checks, configuration management practices,

librarian functions and documentation writing and software testing. Of course all small

software development organizations do not consist of the above composition but most

small organizations will resemble it. As the reader can see, this team does not adhere to

the programming team composition which Weinberg [Wein7l] and Brooks [Broo75]

identified. It is unusual for a small organization to be organized with each team member

formally tasked with the specific roles of the librarian, administrator, tester or other

support roles. This section will identify and explain how a small organization may be

organized.

2.2. Personnel Responsibilities.

The project manager or team leader is a "working manager" who usually has two

major responsibilities. Their first responsibility is to perform the necessary management

tasks of ensuring that the project is on schedule, within budget, and that the software

development procedures and standards are being adhered to and to supervise the software

developers. In addition, the project manager is also a part-time fellow "worker bee" and

53

must also do his share of actual code generation. The project manager must share in the

workload since there is usually more "hands on" work to be done than the management

functions and also because he or she is typically an experienced software engineer and is

required to assist the other team members. The project manager was typically a team

member prior to being promoted to project manager. Thus the project manager will

usually continue to stay actively involved with his or her previous duties.

These project managers face special management problems concerning their

management of software developers. Licker [Lick85] has provided an outstanding

discussion of the difficulties that modern managers of programmers (MOP) face. He

explains that programmers are a special breed of workers who have special requirements.

He states that they tend to be reclusive and not adept at human relationships. They also

dislike paperwork and fundamentally do not like to document their programs. Dr. Licker

stated

There is still the difficulty that programmers must document their programs
before anyone can understand what the program is or does --- and
documentation is not seen as profitable labor by most programmers. It
presents no technical challenges and provides no opportunity for learning.
Furthermore, no one will cheer reading documentation, especially the
manager, who will probably find problems with it.

It is no small accomplishment for managers to successfully supervise programmers in a

large organization. It is even more difficult to successfully manage them in a small

organization where there may be a lack of formal job descriptions or clearly defined

responsibilities. This research effort is not intended to address the management problems

of supervising programmers but these problems do exist and will certainly impact the small

organizations.

The software engineer team members will design, code and test the software. The

senior or lead software engineer will usually be responsible for the system design and

perform the design reviews as required. Additionally, since the organization does not have

54

dedicated personnel for quality assurance and other necessary support functions, these

software engineers will also normally perform these duties on a part-time basis.

2.3. Functional Responsibilities.

The small organization is different from the large organization in relation to their

functional responsibilities as well. By this, we mean that the large organization will have

many software development teams that may be organized by hardware environment,

software environment or perhaps by the applications type. The large organization will also

have dedicated maintenance support units in addition to segregated quality assurance and

support offices. Conversely, the small organization will not have additional support

personnel and they will be required to maintain and support the software that they have

previously developed. This maintenance activity grows as new software is developed until

the small organization is saturated with their maintenance role and are not able to develop

new software. For this reason, the small software development environment model is

heavily weighted towards software maintenance activities. This model will expend 25% of

its activities towards developing new applications software and 75% of its time

maintaining already existing code. There are some small organizations that specialize in

state of the art sophisticated software that is written once and then discarded, but the

majority of the small organizations tend to develop routine software applications which are

then required to be supported.

The small organization may also perform a caretaking role for a major software system.

For example, they may be required to support a large software system that was previously

developed by a third party organization and the small organization is tasked to keep it

operational. They ensure data protection and recovery actions are performed in addition to

making software enhancements. They would typically only have the opportunity to write

small peripheral software programs and utilities to assist them or the customers.

55

3. Difficulties in a Small Organization.

As previously stated, the small organization has special difficulties that larger

organizations may experience to some extent but which are critical to the small

organization. Two of these difficulties will be discussed in this section along with some of

the problems caused by them. The first difficulty is limited personnel resources and the

other is one of the personnel having a casual attitude concerning software engineering

practices.

3.1. Limited Personnel.

By definition, the small organization has a limited number of personnel. Our model has

up to six members who must share responsibilities for developing the software. This may

cause problems since there are not enough personnel to consistently provide adequate

backup. The following problem areas are caused by a lack of personnel.

3.1.1. Limited Overlap of Functional Responsibilities.

Since there are few personnel in the software development organization, the individual

programmers are required to support a broad range of functional responsibilities. This

generates the problem of not being able to have effective backup capabilities for the

software developers. The individual programmers are assigned wide ranges of functional

responsibilities that may saturate or overload the individual programmer. Effectively,

backup support is reduced since the backup programmer may not have very much

experience in his or her secondary area.

3.1.2. Limited Depth of Technical Knowledge.

Because of the wide area of functional responsibilities that the individual programmers

have in a small organization, the programmers tend to develop a broad or shallow level of

knowledge about the applications software. This causes them to become generalists rather

56

that specialists. This "jack of all trades" syndrome inhibits the programmers from

specializing or obtaining a deep understanding or highly technical expertise in a particular

functional area. The programmers are just not allowed to develop specialized skills which

in turn increases the amount of effort it takes to maintain the software.

3.1.3. Shared Software Engineering Responsibilities.

All of the software developers must share the software engineering practices such as

quality assurance, configuration management. This is because there is a lack of dedicated

personnel to perform these functions. This causes problems since whenever more than one

person is responsible for an action, it may create an atmosphere where no one is

responsible. These areas of responsibility should be specifically assigned to personnel in a

full-time manner since they are so important to the successful completion of the software

development efforts. However, this is usually not the case. Most small organizations will

tend to be encouraged by the customers to "code and go". This creates future difficulties in

maintaining this software. While the programmers must be intimately involved in testing

the software and writing the documentation, they should not be responsible for the

approval of the project. The approval actions should be removed from the programmer

level and instead given to the supervisory personnel with the counsel of an independent

quality assurance representative.

3.1.4. Heavy Maintenance Workload.

As previously stated, most of the small organizations are principally concerned with

maintaining previously developed software. The small organization must also support the

existing software environment. This may consist of merely installing new releases of the

operating system and performing the necessary site adjustments. It may also include

correcting identified problems with software that was purchased without maintenance

support from the vendor. They may also be required to support software previously

57

supplied to their customers. It is expensive to maintain software since the programmers

must first learn what the software is doing and understand it before they are able to modify

it. If a programmer does not change a particular portion of software often, he must relearn

it. If the software is difficult to understand, or does not adhere to good programming

practices or standards, it will probably take the programmer longer to modify the software.

3.1.5. Backlog of Application Development.

The backlog of applications software at organizations can exceed three years. There is

usually a lot of software that the customers or users would like to have developed. The

small shop also have backlogs that are due in part to their heavy maintenance workload.

The higher priority items are accomplished first which is usually correcting the problems

with existing software before new software is developed. The cost of software engineers

is quite high and therefore management would rather have work backed up than to have idle

programmers.

3.2. Informal Development Attitudes.

Even more troublesome than limited personnel is the difficulty of the programmers

having casual or informal attitudes concerning software engineering development practices.

These attitudes are similar to those held by most programmers 20 years ago. This attitude

is manifested by programmers that "don't have the time" to document until the end of a

project, perform design reviews, use formal configuration management practices or other

engineering practices that should be used for all development efforts. These attitudes were

prevalent within the industry before the software engineering discipline was first identified

and the benefits were clearly documented by Boehm [Boeh81a] and others. Alternatively,

these attitudes can also be caused by informal personal relationships between the

supervisors and the programmers. These casual or laissez-faire relationships may also

cause poor development practices to be overlooked.

58

This section is not intended to be a tutorial on the proper software development

practices that should be accomplished when developing software. It is instead an attempt to

present some of the problems that are faced by the small organization when good software

development practices are not used.

3.2.1. Poorly Enforced Development Practices.

Today, some software engineers do not believe that this is a problem in today's

enlightened period of structured design and the widespread use of software engineering

practices. They believe that programmers consistently utilize good software development

practices. It is our contention that in fact many programmers do not use these practices and

that this is common in the smaller organizations and is also a present in large organizations.

A highly visible example of noncompliance with software engineering practices and

noncompliance with established company policies would be the recent episodes at Apple

Computer Inc. and also at Microsoft Corporation [Whit88]. Programmers at both of these

large companies disregarded their company standards and developed programs that directly

accessed the hardware addresses and registers rather than using the "standard" and

authorized programming interfaces. In the Apple situation, this resulted in Apple software

that would not properly operate on the new Macintosh II hardware which worked correctly

with the previous Macintosh machines. In the case of Microsoft, the programmers

exploited information about IBM microcomputers to write drivers for several of their

products to take advantage of faster execution speeds. This caused some of their software

products to incorrectly work with the IBM Adapter Interface which was produced by IBM

that was intended to be device dependent. As the the article stated:

The most ironic aspect of all this is that Apple and Microsoft have probably
been the industry's two most vocal proponents of device-independent
interfaces.

59

These are two of the more visible examples of nonadherence to established

programming development standards. While in the "short run" the software performance

was improved, it caused considerable embarrassment to the two companies not to mention

loss of revenues. We contend that this casual attitude is very prevalent in the small

organization.

3.2.2. Uncompleted Projects.

These projects are not projects that are canceled in progress or only partially coded.

These instead are the projects that are apparently complete from the user or customer

perspective but in fact are incomplete in accordance with good software engineering

practices.

One scenario would be when the customers casually requests a capability from the

programmer. Remember that this is a small organization and the users typically have

access to the software personnel. The developer tends to want to write code and do things

for the users and will typically agree to do the project with little hesitation, even if it

requires him to work on it during non-duty hours. There may not be a formal request form

completed by the customer. Even if one is completed, it tends to be casually written. The

programmer then writes the code, tests it to make sure that it works and shows it to the

user. The user is pleased and requests to use the program right away and is provided it

with a few instructions from the programmer.

These projects usually have not had the benefit of rigorous software practices being

used. This causes problems in the future when the programmer and/or user are no longer

with the company but the program is still being used and requires maintenance.

3.2.3. Poor Documentation.

The software does not have to be developed in a small organization in order to suffer

from poor documentation. Examples of poor documentation are too numerous to mention.

60

Albeit, if the documentation was written in a small organization that does not have the

rigorous quality assurance and verification procedures in place, the documentation has a far

greater chance of not being suitable. We would suggest that there are many programmers

that would desire to work in a highly operational environment like the one described above

where they are not constantly being forced to develop good documentation. In these

environments, the paperwork which most people and especially programmers do not enjoy,

is often neglected.

4. CASE Tool Requirements of a Small Organization.

It would appear that all of the CASE development tools are needed in the small

organization. We certainly could not disagree with that conclusion. What we will identify

here is a candidate minimum set of CASE tools that should be available which responds to

the previously identified needs of the small organizations. It is critical that all of the CASE

tools used are easy to learn and use due to the shortage of programming personnel in the

small unit. Additionally, the CASE tools must not require a significant effort to keep it

operational. By this, the tools should not require dedicated resources to update it with

future versions of the software or burden the developers with extensive overhead.

4.1. Front-End CASE Tools.

The small organization should have a structured design development tool for each type

of software application that is developed. This tool will produce designs that are easy to

update as additional design changes occur. All of the design diagrams will be automatically

stored in an active data dictionary and accessible to the other CASE development tools.

4.2. Back-End CASE Tools.

An automated source code generator would be extremely helpful. However, this tool is

not commonly available. When it is available, it should head the list in this category. The

61

available tools that should be included at the present are a syntax sensitive editor, online

code debugger and test data generators.

4.3. Reverse Engineering/Maintenance CASE Tools.

A code restructuring tool and change impact tools are the premier tools in this category.

The programmers must be able to "clean up" the previously written code and also determine

what software and documentation will be affected by any software changes.

4.4. Project Management CASE Tools.

The most important tools in this category are used to support configuration management

and the documentation text editor. These two tools are needed to ensure that all software

and documentation are controlled properly throughout the development life-cycle. The text

editor must be consistent through the entire life-cycle of tools and integrated so

development personnel are not required to learn and use a different text editor for each

individual tool.

5. Summary.

As we have discussed in this chapter, the small organization is really a microcosm of

the large organization. This is reflected in the results of the survey detailed in the next

chapter. The CASE tools we identified to be used by the small organizations provides

relief to some of the problems these organizations currently face. The front-end and

back-end tools provides structured methodologies for designing the software which

improves the programmers productivity. This will then help eliminate some of the backlog

of applications to be developed. These tools also provide automated or improved

documentation support which helps the small organization programmers produce effective

documentation. Since the software engineering responsibilities are shared by the individual

team members, the CASE tools act as an embedded quality assurance representative who

62

enforces the appropriate software engineering disciplines. The reverse engineering and

maintenance tools allow the programmers more time to expand their technical knowledge

of the software. These tools provide the ability for a reduced number of programmers to be

responsible for maintaining more software. This enables a meaningful overlap of the

functional areas of responsibilities to be performed. The project management tools

provides the additional automated support for controlling the software which is needed by

the small organizations.

These small organizations appear to be at the head of the spear of software engineering.

By this we mean that while the large organization will usually adhere to established

software engineering practices, they have the ability to utilize their entire staff of software

development resources, or the "shaft" of the software engineering spear. They therefore

have built-in redundancy and backup support for difficulties that may arise. The small

organization on the other hand, must solve their problems with only the "head" of the

spear. This analogy provides a new meaning of being "on the leading edge of technology".

It is for these reasons that it is critical to improve the development productivity and

software development practices of a small organization.

To solve the problems of the small organization, the reader may suggest that the small

organization merely "do their job correctly to begin with" or other simple but ineffective

advice. The difficulty lies in that most software professionals would prefer do a good job

but they may not be able due to institutional roadblocks. This research is an attempt to

identify those currently available CASE tools that may be of use to the small organization.

We will now turn our attention to what is available and the opinions that software

professionals have concerning the use of the current CASE tools.

63

VL INDUSTRY SURVEY

You can observe a lot by just watching.

Yogi Berra

1. Introduction.

In support of this research, software professionals were surveyed who have

experience using one or more of the CASE products. We were interested in obtaining

their opinions concerning the appropriateness of the use of these CASE tools by small

organizations. Appendix B contains a copy of the cover letter and questionnaire that was

used in this survey.

We wanted to obtain results from experienced users since they are in a better position

to provide informed opinions concerning the use of these tools. We understood that our

results could be biased because the respondents have already shown their endorsement of

the use of CASE tools by their purchase of them. We felt that it was more important to

receive knowledgeable, experienced opinions from informed users rather than requesting

opinions from software professionals who have not had the opportunity to use these tools.

2. Survey Methodology.

We requested names and addresses of representative clients from the CASE vendors.

Some of the vendors were unable to cooperate, while others were able to assist provided

that alternative procedures were followed. Those questionnaires were mailed en masse to

the vendors who in turn forwarded them to their customers. This was done in order to

protect their customers confidentiality.

64

We chose to mail a relatively small number of questionnaires to a broad variety of

different CASE product users. This was done in order to avoid responses that reflect

heavily from a single CASE product. If that CASE product was insufficient, we could

have received heavily unfavorable comments because of that individual product.

Additionally, if we sent a large number of questionnaires to a few different vendors, we

may not have received enough responses. Table 8 reflects that some of the questionnaires

seemed to have been lost and were never returned. We did not want to rely upon just a

few vendors for this reason. Table 8 identifies the distribution of the questionnaires. 12

different vendors participated with our survey. The reason that we received more

responses than the questionnaires sent for the Nastec tool is because we received

responses about the Nastec tool when we sent the questionnaires to addresses supplied by

another vendor. The "direct" distribution method identified in the table was the process

whereby we mailed the questionnaires directly to the customers who were identified by the

vendors. The "vendor" method of distribution consisted of mailing the questionnaires to

the vendors who in turn mailed them to their customers. It would appear that the

questionnaires which were mailed by the vendors were not as well received as those which

were mailed directly. The response rate for the direct mail was 53 out of 93 for a response

rate of approximately 57% while the questionnaires which were mailed by the vendors

responded with only 8 out of 59 for an abysmal 14% response rate. The "other

responses" were responses received as a result of customers completing a questionnaire

for additional CASE products that they were also using. The negative responses were not

negative in the sense that they did not recommend the use of CASE tools, rather these

figures are a result of the responses that either had not actually installed the products or

were unable to complete the questionnaire. The survey produced 76 usable completed

questionnaires for our research. We were quite satisfied with the response level from the

customers surveyed. Many of the respondents spent considerable time and effort to

explain some of their answers which provided excellent insights into their opinions and

65

were most helpful.

Table 8 Questionnaire distribution.

Vendr Distribution Method Number Sent Responses

AGS Vendor 10 0

CADRE Direct 16 10

Catalyst Vendor 10 0

ICONIX Vendor 12 7

IDE Vendor 12 1

Index Direct 13 4

KnowledgeWare Vendor 15 0

Language Technology Direct 8 3

LBMS Direct 14 8

McDonnell Douglas Direct 11 11

Nastec Direct 11 12

Promod Direct 20 5

Other Responses --- 15

Total 152 76

Negative Responses --- 6

3. Results.

Appendix C contains the data from the 76 usable completed questionnaires we received.

It also contains an explanation of what the data value codes represent for each question's

responses. This section extracts and presents portions of the results. We included all of

the data from the 76 completed respondents in Appendix C to allow the interested readers to

perform data reduction of additional questions of interest.

The results of the survey can be categorized into four different areas. The first category

66

of information concerns the organization's demographics. This data includes the

organization's size, individual group size and details concerning their use of formal

development practices. The second area identifies their opinions about using the specific

CASE tool in the small organization. The third area contains their opinions about using the

CASE product family by the small organizations. Finally, the respondents also provided

additional information about what they would like to see improved with the CASE tools.

The following sections will present the results and provide graphs of some of the results.

3.1. Organization Composition.

The first area of the survey consists of the demographics of the respondents

organizations and their software development environments. This section will discuss the

results of the answers as they pertain to the organization and development environment

questions in sections I and II.

Approximately 85% of all respondents identified themselves as managers or project

leaders and only 15% as analysts or "others". Hopefully this will provide us with a

"bigger" picture of the use of the current CASE tools.

3.1.1. Organization Size.

This research effort focuses on the small organization and we would prefer to have

received most of the responses from representatives of the smaller organizations.

Unfortunately, most users of the CASE products tend to be in larger organizations.

Approximately 55% of the respondents work in organizations with over 100 software

development personnel. Economics could be the principle reason for this fact since the

tools tend to be relatively expensive.

We discovered that most of the software groups were small (Figure 12). 33 of the 76

responding organizations were made up up 15 or fewer software development personnel in

their groups. 18 of these groups consisted of fewer than 7 personnel. This reflects that

67

most software development is performed by small groups within even large organizations.

23%

El less than 7

El 7 -15

........ 16.. 25.................................... [1 - 2

..... m ore than 25
~20%

22%

Figure 12 Reported sizes of the software d -lopment groups.

According to the respondents, the average software development group consists of

nearly 30 people. Figure 13 illustrates the average composition of the software

development group. While the size of this average group varies by organization, we

anticipate that the ratios will be consistent. It is significant that the average for both the

quality assurance and documentation/technical writers combined is only about 4% of the

development group. Other personnel identified by the respondents included operations

personnel, PC support, communications specialists, project control personnel and also

consultants.

Another indicator that most of the software is developed by small groups are the

responses to question 8 in section 11. Most of the respondents (65%) stated that the

software efforts are performed by less than six people. The average experience level of the

programmers in the organizations that responded was quite high. 57% of the respondents

stated that most of their programmers had over five years experience.

68

2% 2%
2%

U Management

* Systems Analysts

0 Programmers

25% .. Database Specialists

.. Quality/Assurance

................. C Documentation53°/° ii~ ! ii o[Other

Figure 13 Average composition of the software development group.

3.1.2. Software Project Characteristics.

We received an appreciation for the types of software efforts performed by our

respondents. The answers were about equally divided between being responsible for

developing software or responsible for both development and maintaining software. No

one stated~ that they were responsible only maintaining software. The technical difficulty of

their projects were either technically difficult (38%) or of average difficulty (62%). None

responded that they developed simple projects. Most (82%) of the projects took over six

months to develop. The majority (58%) of the organizations support a combination of

,,iainfranme, minicomputer, microcomputer and network hardware suites.

3.1.3. Organization Software Development Practices.

We were interested in the existing software development practices that were in place

prior to the installation of the CASE tools. We discovered that most of the respondents

work in organizations that use established software development methodologies. From this

we can project that they also use software engineering practices. The decision to purchase

the CASE products were about evenly divided between the managers (44%) and the

69

technical staff (35%) with about 16% decided by a combination of the managers and

technical staff together. It was interesting to note that a two of the decisions were prompted

by customers of the organizations.

Most (64%) respondents stated that their organizations had company programming

standards in place prior to installing the CASE tools and of those with standards already in

place, 71% claimed that the standards were either always or usually followed. Formal

software design methods were in place in 43% of the installations and of these, 76% stated

that the methodology was either always followed or usually followed. These figures

indicate that approximately 47% of the installations have programming standards that are

usually or always followed and about 34% of the sites either consistently followed or

usually followed a specific programming methodology. These statistics are reinforced by

the fact that the existing working environment (Figure 14) was about evenly divided

between being informal (46%) and somewh..re in between (45%) being highly

structured/formal and informal. This results in only about 9% of the organizations being

highly structured and formal.

9%

OHighly structured
46% . Somewhere in

...... between

*informal

Figure 14 Level of organizational software development formalisms.

3.2. Use of CASE Tools in General.

The response to using CASE tools by small organizations was overwhelmingly positive

70

(Figure 15). Over 87% of the respondents recommend that CASE tools should be used by

a small organization. This is a resounding endorsement of the use of CASE tools. This

response was further emphasized when over 85% of the respondents stated that it was a

wise decision to install these CASE tools.

5%

Yes

IEMaybe
•No

87%

Figure 15 Recommendation for the use of CASE tools by small organizations.

We also discovered over half of all personnel in the software shops are using the CASE

tools (Figure 16). It is very interesting to note that in 17% of the software shops, all of

the personnel use their CASE tool. This suggests that not only are the CASE products

being purchased, but once bought are being aggressively used.

There was a significant difference in the reaction to the CASE tools by the senior and

junior programming personnel. 81% of the more experienced personnel favored the use of

the CASE tools, while only 51% of the junior personnel favored the use of these tools.

This may be a reflection that the junior personnel not fully understanding just how

beneficial these products are, while the more senior personnel have had the opportunity to

experience problems which could have been prevented by using these tools. Perhaps the

junior personnel are more highly trained in the current software engineering disciplines

already and do not see the need for these tools. Unfortunately, our questionnaire did not

71

address this issue in more detail and so this topic could be of interest for future research.

I %12%1

* All

* 75% of personnel

14% U 50% of personnel

0 25% of personnel
34% E0 one person

0l none

Figure 16 Amount of personnel who use the CASE tools.

We queried the users about the impact felt by their organizations when they installed

their CASE tools. Only 15% of the respondents stated that extensive modifications were

required (Figure 17). However, over 95% of the them stated that the level of modifications

o] Fit right in

* Extensive

60%

Figure 17 Modifications to the organizations caused by installing the CASE tools.

experienced were what they anticipated. It would appear that the CASE tools fit into

existing methodologies fairly well. This leads us to believe that the software developers

72

performed product evaluations to minimize installation impacts.

We asked the respondents in which phases of the software life-cycle they use their

CASE tools (Figure 18). 67% of the tools are used in the definition of requirements phase;

82% are used in the analysis phase; 74% are used in the design phase; 22% are used in the

coding phase; 16% in the testing phase; and 19% are used in the maintenance phase.

Additionally, the respondents also specifically identified the generation of documentation

as a separate use of the CASE tools. Most of these tools contain aids to produce

documentation but two of the respondents felt that this was such a significant use of the

tool that they identified it as a separate and distinct use. Th, se totals reflect that the CASE

tools are used for more than a single phase. The small percentages for the later phases

reflect that most of the tools used are those for the front-end design effort.

go-.
80- Define requirements

V 70 U Analysis
60-
50U Design
40- El Coding
30- 0] Testing10 0 Maintenance0 -' I+ O T

Figure 18 Phases in which the CASE tools are used.

Table 9 contains the cumulative results for all of the tools surveyed for question 12 in

section III. The five columns identify the number of responses we received and the

average score is also listed. We are providing these cumulative averages here for this

group of questions for all of the tools surveyed. The specific totals for each tool are

identified in the next section.

73
Table 9 Combined results of opinions provided for all CASE tools.

No. Ouestion 1 2 1 4 1 Ave
12a. Ease of use 22 29 16 7 2 2.2

12b. Helpful for requirements definition 26 24 12 5 8 2.3
12c. Enhances productivity 27 31 14 1 3 2.0

12d. Indispensable for analysis 22 22 21 5 5 2.3
12e. Tool is too rigorous 1 7 18 20 27 3.9

12f. Personnel are resistant 1 6 17 24 28 4.0
12g. Personnel should use it 26 21 17 7 4 2.2

12h. Improves software maintainability 28 25 15 2 4 2.0
12i. Good economic value 26 20 17 8 5 2.3
12j. Should use for coding 15 7 16 13 20 3.2

12k. Good configuration management 12 19 21 10 8 2.8
121. Should use for testing 12 10 18 11 21 3.3
12m. Design capabilities needed 20 30 15 4 5 2.2
12n. Well suitedformaintenance 17 21 15 10 10 2.7

12o. Appropriate for small team 30 31 10 2 3 1.9

12p. Other tools more appropriate 6 9 24 14 18 3.4

3.3. Use of Specific CASE Tools.

This section identifies the results of the survey for the specific CASE tools (Table 10).

We have identified ten categories of the CASE tools. One for each of the nine different

tools for which we received responses and a tenth category to include the other responses

that we received. Additionally, we identified in Table 10 how many responses were

received for each tool.

3.4. Additional Comments Received.

We received numerous insightful comments from our respondents that provided clear

visibility into their use of their CASE tools and their software development environments.

These comments ran the gamut from CASE tools being precisely what was needed to one

comment that explained that they were dissatisfied with their particular CASE tool but were

74
Table 10 Response averages for the individual CASE tools.

ILI -

Question .0

Number o

Number of
Responses 8 12 4 7 11 5 3 1 10 15

12a. 2.1 2.4 3.3 1.6 2.5 3.0 1.3 2.0 1.5 2.2

12b. 1.8 1.9 1.8 2.9 1.8 2.0 5.0 2.0 2.4 2.7

12c. 1.6 2.3 3.0 1.6 2.0 2.6 1.7 3.0 2.2 1.5

12d. 1.5 2.2 3.7 1.9 2.0 2.6 3.7 2.0 2.0 2.9

12e. 4.0 4.0 3.0 4.1 3.7 3.2 4.0 4.0 3.7 4.3

12f. 4.1 4.1 4.0 4.3 3.7 3.2 4.0 3.0 4.2 3.9

12g. 2.0 2.5 3.8 2.1 1.7 2.4 1.3 3.0 2.7 1.9

12h. 1.6 2.3 2.3 2.0 1.7 3.6 3.7 3.0 2.1 1.3

12i. 2.1 2.2 3.5 1.7 1.9 3.8 3.0 4.0 2.7 1.7

12j. 4.1 2.6 3.5 2.8 3.8 4.2 2.0 3.0 3.5 1.6

12k. 2.4 2.9 3.3 3.1 2.2 4.4 2.7 3.0 3.3 2.0

121. 3.8 3.5 3.5 3.8 3.4 4.6 1.3 3.0 3.2 2.5

12m. 1.5 2.3 2.3 1.9 2.5 3.0 3.3 2.0 2.5 1.9

12n. 3.1 2.6 2.0 3.0 2.9 3.4 1.0 3.0 2.7 2.3

12o. 1.4 2.1 L.3 1.4 2.1 2.6 2.3 2.0 2.0 1.7

12p. 4.4 3.0 2.3 3.4 3.3 2.4 3.7 3.0 4.1 3.4

75

going to continue to pursue the use of CASE tools since they were convinced that they

were effective. This section will attempt to identify and quantify comments received and

list those areas and capabilities of CASE tools that were found beneficial or are desired by

the respondents. These results were principally obtained from questions 9a, 9b and 11 in

section IH.

The respondents identified several major types of capabilities that are important to them.

These capabilities were either identified as being an existing beneficial capability of the

CASE tool or a capability that they would like the tool to have. The following sections

explain the major categories of capabilities listed. Appendix C contains the comprehensive

list of the features identified.

3.4.1. Overall System Capabilities.

The respondents identified five areas within the overall system that are of interest to

them. First, the overall operation speed of the tool is important. They were concerned

with execution speed, physical security and overall general improvements. Secondly, they

were concerned with the tool's interfaces. They desire good user interfaces, seamless

integration with other CASE tools, and effective interfaces with existing systems and

databases. Third, the data dictionary is very important to them. Nearly half of the

respondents said that the data dictionary was one of the most useful features of the tool.

They also identified additional data dictionary formats and more powerful data dictionary

functions as being desirable. Fourth, they are interested in database capabilities. They

expressed interest in data normalization aids and additional database design capabilities.

Finally, they expressed their desires for enforced formalisms and structured

methodologies. They feel that it is important that the tools provide these disciplines.

3.4.2. Project Management Capabilities.

The respondents identified several areas of interest. The topics receiving the most

76

interest included better word processing capabilities, report generation, automated

documentation generation, project management capabilities in general, configuration

management and also requirements tracking. Additionally, they mentioned project

tracking, estimation and measurement aids.

3.4.3. Front-end Capabilities.

The graphics features were by far the most frequently identified front-end capabilities

mentioned. Over half of the respondents listed graphics as one of the most useful features

of their CASE tool. Several other features also received repeated attention. These included

error checking, diagraming capabilities and consistency checking. Many other features

received mention which included ADA, prototyping, and real-time support.

3.4.4. Back-end Capabilities.

The principle capability identified in this category was a code generator. Two

respondents thought it was the most useful existing feature (obviously they were using a

back-end CASE tool), and nine others desired a code generator in their tool. Others that

were mentioned included a context sensitive editor, structured testing aid, test data

generator, and ADA support.

3.4.5. Reverse Engineering/Maintenance Capabilities.

The respondents identified two major areas in this category. They listed the general

reverse engineering capability and also identified aids to ease the burden of maintaining

existing software. There was a definite lack of specific comments provided for this

category. We believe that a contributing cause for this is the fact that most of the

respondents use front-end design tools and therefore are unaware of the available

capabilities of this category of CASE tools.

77

VII. CONCLUSIONS

For every problem there is one solution which is simple, neat, and wrong.

H. L. Mencken

This thesis has sought to review some of the commercially available CASE products

for use by small software development organizations with less than seven personnel. We

performed this research in three phases. The first consisted of reviewing pertinent

literature relating to software engineering and software development methods and

practices. We then reviewed a selection of CASE product literature and observed product

demonstrations. Finally, we performed a survey of CASE tool users within the industry.

This survey, while displaying a lack of rigorous validity, provides us with an appreciation

of the opinions held by these software professionals concerning the use of CASE tools.

1. Findings.

The survey provided us with an overwhelming endorsement for the use of CASE tools

by the small software development organization. It was surprising to us to see the

strength of their conviction. Over 87% of the survey respondents recommended their use

and 8% of the them stated that the CASE tools should be used under certain conditions.

Only 5% or 3 of the 76 respondents stated that they should not be used by the small

organization.

The CASE tools provide graphic support that is highly desirable to the users. These

graphic representations are the heart of this generation of CASE tools. They provide

graphic illustrations of the system and software design that are quick and relatively easy to

78

update. This alone has provided extensive productivity gains to the software developers.

The use of active data dictionaries has provided mechanical support to the programmers to

identify dangling or unidentified functions, execution paths or variables that in the past

may have not been discovered until testing or user execution. This has provided for

cleaner and more accurate code.

Our research of the literature has also endorsed the use of these CASE tools. Most of

the tools appear to adhere to and encourage the use of the software engineering disciplines

that are recommended by leaders in the field. It appears that the vendors are for the most

part providing the software development structure and discipline desired.

This first generation of CASE tools appear to satisfy the special concerns of the small

software development organization. These tools assist the small shops in overcoming the

difficulties caused by their shortage of personnel. These tools improve programmer

productivity thereby enabling them to produce and maintain more software. These tools

also provide support for the more structured software development environment that is

critical to the small organizations. These tools provide development methodologies to

properly implement good software engineering practices. In this respect, these CASE

tools act as an embedded quality assurance inspector which guides the software

development in a real-time mode. While the tools are not perfect, they provide solutions to

many of the problems faced by the small organization.

We have also discovered that the CASE tool industry is currently in a relatively early

stage of evolution desperately trying to mature and stabilize. For example, CASE tools

have reached the point of evolution where they are recognized and seminars are held

throughout the country about them. The industry is continually hosting professional

seminars to discuss relevant CASE issues. Of significance is the fact that vendors are now

attempting to establish industry standards for their tools to interface with each other. They

are just starting this effort, and it is encouraging to observe this process. This apparent

cooperation should assist in improving the integration between the different CASE tools

79

and help vendors who are developing new products.

2. A Comment Concerning Future CASE Tools.

Based upon the responses received and literature researched, we would like to offer a

comment concerning future CASE tools. First, the tools of the future must be user

friendly beyond marketing claims. They truly need to be easy to learn and operate. The

software engineer's time is limited even in the larger organizations. Secondly, the vendors

must continue to pursue better integration between each of their individual tools and with

other vendors tools. Hopefully in the future, the software personnel will be able to pick

the most appropriate design tool from his inventory for an individual application and use it

without concern whether it will interface properly with any of his back-end support tools.

This mix and match approach needs to be aggressively pursued since there is no one

"perfect" design method suitable for every application. If this is not accomplished,

programmers will be forced to either go without or force a tool to be used inappropriately.

Finally, we encourage all software professionals to aggressively pursue the use of reverse

engineering and maintenance tools. These tools show exceptional promise and appear to

offer tremendous benefits in maintaining software. We are being overrun with software

applications and unless we are able to maintain the previously developed software, we

may discover that we are developing disposable software. That is, software that is used

one time and then discarded.

3. Future Research.

We were obviously limited in both time and resources for our research and were not

able to accomplish all that we would have preferred. Additionally, we discovered

interesting ideas after we had begun the effort that could not be included. We now offer a

few suggestions for future research.

First, the survey questionnaire used was our first effort at discovering opi. ons of the

80

software industry and can certainly be improved. The data that we received was excellent

and provided a tremendous amount of information. In fact, several of the answers

suggested additional areas that would be interesting. For example, why did the junior

programming personnel have a more unfavorable opinion about the CASE tools? It would

also be enlightening to obtain more information about the existing company standards and

programming methodologies both before and after the CASE tools were installed.

Secondly, we feel it would be constructive to perform a rigorous experiment with

several programming groups to discover the impact of using CASE tools. This would be

similar to Boehm's [Boeh8lb] excellent effort where he had two different groups of

graduate students develop a software project where one used the large-scale software

engineering procedures and the other group did not. It would be beneficial to observe and

quantify improvements that are attributable to using CASE development tools.

Finally, we made no effort to evaluate the economic impact of using CASE tools. We

felt that since the CASE industry is so young that it would not be possible to adequately

comment. We think that as the industry matures and stabilizes, that an economic review

will be possible if experiments are performed which are similar to the one we referred to in

the last paragraph.

Our research has discovered an overwhelming endorsement for the use of Computer

Aided Software Engineering (CASE) tools by the small software development

organization. The literature review and the opinions expressed by the 76 respondents to

our survey indicate that we as computer scientists should aggressively and actively

advance future research and utilize this newest generation of software development

productivity tools. We leave as our challenge to the readers to obtain additional

information concerning these tools and to integrate them into their development efforts.

81

LITERATURE CITED

[Boeh73] Boehm, Barry W., "Software and its Impact: A Quantitative Assessment,"
Datamation, 19, 5, (May 1973), pp 48-59.

[Boeh76] Boehm, Barry W., "Software Engineering," IEEE Transactions on
Computers, C-25, 12, (December 1976), pp 1226-1241.

[Boeh81a] Boehm, Barry W., Software Engineering Economics, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, (1981).

[Boeh81b] Boehm, Barry W., "An Experiment in Small Scale Application Software
Engineering," IEEE Transactions on Software Engineering, SE7,5,
(September 1981) pp 482-493.

[Booc87] Booch, Grady, Software En*neering with Ada, 2ed, Benjamin/Cummings
Publishing Company Inc., Menlo Park, CA, (1987).

[Broo82] Brooks, Frederick P. Jr., "The Mythical Man-Month. Essays on Software
Engineerin.g," Addison-Wesley Publishing Company, Reading, MA,
(1982).

[Broo85] Brookshear, Glenn J., Computer Science: An Overview,
Benjamin/Cummings Publishing Company Inc., Menlo Park, CA, (1985).

[Brow88] Brown, Alice C., "Review of the Availability of CASE Tools for the PC
and Workstations," IEEE & ACM Professional Development Seminar,
Tampa, FL, (June 4, 1988).

[Char86] Charette, Robert N., Software Engineering Environments: Concepts and
Technology, McGraw Hill, Inc., New York, NY, (1986).

[Dema79] DeMarco, Tom, Structured Analysis and Specification, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, (1979).

[Dijk65] Dijkstra, Edsger W., "Programming Considered as a Human Activity," in
Proceedings of the 1965 International Federation of Information Processing
C.ngr~. North Holland Publishing Company, Amsterdam, Netherlands,
(1965) pp 213-217.

[Dijk72] Dijkstra, Edsger W., "The Humble Programmer," Communications of the
ACM, 15, 10, (October 1972), pp 859-866.

[DOD88] Department of Defense. Defense System Software Development,
DOD-STD-2167A, Department of Defense, Washington D.C., (1988).

82

[Edwa88] Edwards, William W. II, "A Methodology for CASE Tool Selecetion," in
Proceedings of CASE Studies 1988. Ninth Annual Conference on
Applications of Computer Aided Software Engineering Tools, (May 23-27
1988), Section C8801, ppl-35.

[Gibs88] Gibson, Michael L., "A Guide to Selecting CASE Tools," Datarnation,
34, 13, (July 1, 1988), pp 65-66.

[Glas82] Glass, Robert L., "Recommended: A Minimum Standard Software
Toolset," ACM Software Engineering Notes, 7,4, (October 1982), pp 3-13.

[Hoar8l] Hoare, C. A. R., "The Emperor's Old Clothes," Communications of the
ALM, 24,2, (February, 1981), pp 75-83.

[Jack83] Jackson, M.A., System Development, Prentice-Hall, Inc., Englewood
Cliffs, NJ, (1983).

[Knut73] Knuth, Donald E. The Art of Computer Progmamming. Vol 1/ Fundlemental
Alg.ritd.m, 2ed, Addison-Wesley Publishing Company, Reading, MA,
(1973).

[Lick85] Licker, Paul S., The Art of Managing Software Development People,
John Wiley & Sons, New York, NY, (1985).

[Merl88] Merlyn, Vaughn P., "CASE - Today and in the Future," in Proceedings of
CASE Studies 1988. Ninth Annual Conference on Applications of
Computer Aided Software Engineering Tools, (May 23-27, 1988), Section
C8820, ppl-12.

[Naur76] Naur, Peter, Randell, Brian, Buxton, J.N., Software Engineering Concepts
and Techniques: Proceedings of the NATO Conferences,
Petrocelli/Charter, New York, NY, (1976).

[Orr77] Orr, K.T., Structured Systems Development, Yourdon Press, New York,
NY, (1977).

[Parn72] Parnas, D. L., "On Criteria to be used in Decomposing Systems into
Modules," Communications of the ACM, 15, 12, (December 1972), pp
1053-1058.

[Pres87] Pressman, Roger S., Software Engineering: A Practitioner's Approach,
2ed, McGraw-Hill Book Company, New York, NY, (1987).

[Stay76I Stay, J.F., "HIPO and Ingrated Program Design," IBM Systems Journal,
15, 2 (1976), pp 143-154.

[Voel88] Voelcker, John, "Automating Software: Proceed with Caution," IEEE
Spectrum, 25, 7, (July 1988), pp 25-27.

[Ward86] Ward, Frank, "Keynote Address", Proceedings: Workshop on Future
Directions in Computer Architecture and Software, (Dharma P. Agrawal,
ed.), 5-7 May 1986, pp 1-15.

83

[Warn74] Warnier, Jean D., Logical Construction of Programs. 3ed., Van Nostrand
Reinhold Company, New York, NY, (1974).

[Wass82] Wasserman, Antony, I., "Automated Tools in the Information System
Development Environment," in Automated Tools for Information Systems
Desgn, (Hans-Jochen Schneider & Antony I Wasserman, eds.), North
Holland Publishing Company, Amersterdam, The Netherlands, (1982),
pp 1-9.

[Whit88] Whitmore, Sam, "Programming Shortcuts are Not Time Savers in Long
Run," PCWeek, (June 28 1988), pg 32.

[Wein71] Weinberg, Gerald M., The Psychology of Computer Programming, Van
Nostrand Reinhold Company, New York, NY, (1971).

[Wirt71] Wirth, Niklaus, "Program Development by Stepwise Refinement,"
Communications of the ACM, 14,4, (April 1971), pp 221-227.

[Your79] Yourdon, Edward N., and Constantine, Larry L., Structured Design:
Fundlementals of a Discipline of Computer Prog ram and System Design,
Prentice-Hall, Inc., Englewood Cliffs, NJ (1979).

84

APPENDIXES

85

APPENDIX A.
VENDOR CONTACTS

ADDRESS PRODUC.]. (S)f CONTACT

AGS Management Systems, Inc. MULTI/CAM Mr. Robin Wheeler
880 First Ave (404)-952-9093
King of Prussia, PA 19406

American Management Sys, Inc Life-cycle Productivity
9800 Centre Parkway, Suite 950 System
Houston, TX 77036

Applied Data Research, Inc. Depictor
Route 206 and Orchard Rd
CN-8
Princton, NJ 08543

Arthur Anderson & Co. Foundation Series Mr. Robert Ebaugh
101 East Kennedy Blvd (813)-222-4600
Tampa, FL 33602

CADRE Technologies, Inc. Teamwork Ms. Jackie Harness
222 Richmond St (401)-351-5950
Providence, RI 02903

The CADWARE Group, Ltd SYLVA Series
869 Whalley Ave
New Haven, CT 06515

The Catalyst Group PATHVU et al. Mr. James Peterson
Peat Marwick Main & Co. (800)-323-3059
303 East Wacker Dr
Chicago, IL 60601

CGI Systems, Inc. PACBASE Mr. Larry Claussen
8200 Greensboro Dr, Suite 1010 (703)-448-8181
McLean, VA 22102

Computer Sciences Corp Design Generator
3160 Fairview Park Dr
Falls Church, VA 22042

Cortex Corp CorVision Mr. Bob Howatt
138 Technology Dr (617)-894-7000
Waltham, MA 02154

86

Appendix A. (cont'd)

ADDRESS P CONTACT

ICONIX Software Engineering, Inc PowerTools Series Mr. Doug Rosenberg
2800 Twenty Eighth St, Suite 320 (213)-458-0092
Santa Clara, CA 90405

IDE Software through Pictures Mr. Doug Whall
8300 Boone Blvd, Suite 500 (703)-848-8808
Vienna, VA 22180

Index Technology Corp Excelerator Mr. William Agee
One Main St (404)-992-2910
Cambridge, MA 02142

Institute for Information Industry KangaTool Series
8th Floor, 106 Ho-Ping E. Rd.
Taipei, Taiwan, R.O.C.

KnowledgeWare KnowledgeWare Mr. Steve Kahan
3340 Peachtree Rd., NE Workstation Series (800)-338-4130
Suite 1100
Atlanta, GA 30026

Language Technology RECODER Mr. Bob Freedman
27 Congrss St (800)-732-6337
Salem, MA 01970

Learmonth & Burchett AUTO-MATE PLUS Mr. Ed Hall
ManagementSystems Inc. (800)-231-7515
2900 North Loop West, Suite 800
Houston, TX 77092

Manager Software Products, Inc. Manager Series
131 Hartwell Ave
Lexington, MA 02173

Matterhorn, Inc. HIBOL
6207 Bury Dr
Eden Prairie, MN 55344

McDonnell Douglas ProKit*WORKBENCH Ms. Bev Deshazer
P.O. Box 516, L861-302-IE (800)-822-7337
St. Louis, MO 63166

Mentor Graphics Corp Mentor Graphics CASE
8500 S.W. Creekside Place
Beaverton, OR 97005
(formerly Tektronix CASE Division)

META Systems PSL/PSA et al. Ms. Rebecca Sizemore
315 E. Eisenhower Pkwy, Suite 200 (313)-633-6027
Ann Arbor, MI 48104

87

Appendix A. (cont'd)

ADDRESS P CONTACT

NASTEC Corp CASE 2000 DesignAid Mr. Darrell Trimble
24681 Northwestern Highway (703)-556-9401
Southfield, MI 48075

OPTIMA, Inc. Design Vision, et al. Mr. Mike LeSage
1300 Woodfield Rd, Suite 400 (800)-633-6303
Schaumburg, IL 60173

POLYTRON Corp Poly Series
1700 NW 167th Place
Beaverton, OR 97006

Promod, Inc. ProMod Series Mr. Tom Scott
23685 Birtcher Dr (800)-255-2689
Lake Forest, CA 92630

RATIONAL RATIONAL
3320 Scott Blvd Design Facility et al.
Santa Clara, CA 95054

Softlab, Inc. MAESTRO, et al. Mr. Dennis Crow
188 The Embarcadero (415)-957-9175
Bayside Plaza, 7th Floor
San Francisco, CA 94105

StarSys, Inc. MacBubbles
11113 Norlec Dr
Silver Spring, MD 20902

Texas Instruments, Inc. Information Engineering Mr. Steve Thomas
6500 Chase Oaks Blvd Facility (703)-849-1469
P.O. Box 869305
Piano, TX 75086

Visible Systems Corp VISIBLE ANALYST
49 Lexington St Workbench
Newton, MA 02165

Visual Software, Inc. vsDesigner
3945 Frecdom Cir, Suite 540
Santa Clara, CA 95054

YOURDON, Inc. Analyst/Designer Toolkit
1501 Broadway
New York, NY 10036

88

APPENDIX B.
SAMPLE SURVEY QUESTIONNAIRE

89
Appendix B.

DEPARTMENT OF THE AIR FORCE
DETACHMENT 158. AIR FORCE ROTC (ATC)

UNIVERSITY OF SOUTH FLORIDA. TAMPA. FL 33620-8250

REPLY TO
ATTN OP

19 July 1988

To: Dear Computer Professional,

I am currently sponsered by the Air Force for my graduate studies at the
University of South Florida. For my thesis, I am researching the use of CASE
tools in the small software group environment. Your CASE vendor supplied
your name as someone who might be able to assist me.

I appreciate you completing this questionnaire; it should take less than 20
minutes. A pre-paid postage envelope is enclosed. If you would like a copy of
the results, please let me know.

If possible, I would like the project or team leader responsible for the
development/maintenance projects to complete the questionnaire. Answers

should be provided as they pertain to your software group that is using the
CASE tool(s) and not the entire company.

Please answer the questions as they apply to you with that in mind. If
there is more than a single response to any question, please check all that apply.
Conversely, if information is unavailable for a question, please leave that
questior, blank.

Additional comments, are of course encouraged. Please include them on
the reverse side of this cover letter.

Thank you,

Marc L. Sims, Captain, USAF

MLS/mtf

AIR FORCE-A GREAT WAY OF LIFE

90
Appendix B. (cont'd)

SECTION I. Personal Information:

Position: 03 Manager 03 Project Leader El Analyst 0 Other
May I contact you for additional information? 0 Yes 0 No

If yes, Name Telephone

* Would you recommend the use of your current CASE development tool(s) for a
software group with less than seven people?

o Yes 0 No 0 It depends

SECTION II. Your Software Development Environment Prior to the
Installation of Your First CASE Tool(s):

la. Approximate number of Data Processing personnel in the entire company:
Management _ Systems designers/analysts
Programmers _ Database Specialists
Q/A Testers Documentation/Tech Writers
Others:

Note: for the remaining questionnaire, please answer the questions as
they pertain to your software group and not the company.

lb. Approximate number of Data Processing personnel in your group:

Management _ Systems designers/analysts
Programmers _ Database Specialists
Q/A Testers Documentation/Tech Writers
Others: __

2. Average experience level of personnel in your group?

0 Greater than 5 years 0 3-5 years 0 Less than 3 years

3. What type of efforts are supported?
[Business 0 Education 0 Government 01 Other

4. What environment(s) do you support?

o Mainframe 0 Mini 0] Micro 0] Networks

91
Appendix B. (cont'd)

5. Typical software projects developed/maintained?

o1 Applications 13 Systems level [] Database El Telecommunications

o3 Engineering 0l Real-time 03 R & D 03 Other

6. The software products you create in your office tend to be:

o3 Technically difficult 0l About average 03 Not techdically difficult

7. Are you primarily responsible for:

E3 Developing new programs El Maintenance 0l Both

8. How many people usually work on a typical project?

El 1 or 2 0 3-5 El Greater than 5

9. Most of the projects take how many person-months?
(e.g., initial delivery, enhancement or maintenance upgrade, etc.)

El Less than 1 El Less than 6 0l Less than 12 0l More than 12

10a. Were there company programming standards in place prior to installing the
CASE tool(s) ?

0 Yes 0 No

10b. Were they observed? El Yes El Usually El Seldom El No

11a. Were formal software design method(s) such as the Yourdon or Jackson
methods used prior to installing any CASE tools?

0 Yes El No

11b. If yes, which one(s)? [] In-house development methods

El Other

11c. Were they observed? El Yes E Usually El Seldom El No

12. Was the decision to install the CASE tool driven by:

0l Management [] Technical staff El Other

13. How would you classify your software development working environment that
existed prior to installing your first CASE tool?

o3 Highly structured and formal l Informal 13 Somewhere in between

2

92
Appendix B. (cont'd)

SECTION III. Environment Since Installation of Your CASE Product(s):
If you have installed more than one CASE product, please complete a separate
copy of this section for each tool. We will pay for any additional postage.

Tool Name/Vendor:

1. When was the tool installed? Month Year

2a. Did you receive training from the vendor? 0 Yes 0 No

2b. Was it appropriate? 0 Yes 01 No

3. What type of on-going training is being used?

0 None 0 Formal Classes 0 On-the-job training

4. How many people use this tool?

0 All 01 75% 01 50% 0 25% 0 I person 03 None

5a. What has the response been from your most experienced personnel?
01 Favorable 0 No opinion 03 Unfavorable

5b. What has the response been from your least experienced personnel?
0 Favorable 03 No opinion 0 Unfavorable

6. During which phases of the software development cycle do you use this tool?
Please check each block that applies.

0 Definition of requirements

0 Analysis

0 Design

03 Coding

0l Testing

01 Maintenance

If other, please specify

7a. Did you modify your existing methods to use this CASE tool?

0 No it fit right in 03 Some 03 Extensive modifications

7b. Is this what you anticipated? 0 Yes 01 No

8. In your opinion, was the installation of this tool a wise decision?
0 Yes 0 No

3

93
Appendix B. (cont'd)

9a. What is the tool's most useful feature(s)? (e.g., graphics, data dictionary, error
checking, etc.)

9b. What feature(s) would you like this tool to have?

10. Has the addition of this tool and the reaction of your group made it easier or
harder to introduce a similar tool in the future?
[Yes O3 No

11. What additional CASE tool(s) would you like to have?

12. Based upon your experience, please give your opinions concerning the use of this

CASE tool by a software group of fewer than seven people.

('1" means strongly agree, "5" means strongly disagree) 1 2 3 4 5

a. This tool is easy to use. [0 0 0 0
b. This tool is helpful for the Requirements Definition phase. 0 0 [0 0 0
c. This tool enhances productivity in a small group. 0 0 0 0 0
d. This tool is indispensable for the Analysis phase. 00 0 0 0
e. This tool is too rigorous in enforcing its methodologies

and does not allow programmer flexibility. 0 0 0 [0
f. Personnel are resistant to using this tool and will cause

management/personnel problems in a small group. 0 0 0 0 0
g. Personnel should be required to use this tool. 0 0 0 0 0
h. Using this tool for the Design phase greatly improves

the maintainability of the software. 0 01 [0 [
i. Economically, this tool is a good value for a small group. 0 10 0 0
j. This tool should be used during the Coding phase. 0] 10 0 0 0

k. This tool provides good configuration management
practices that are needed by a small group. 1300130

1. This tool should be used during the Testing phase. 0 0 0 0 0
m. The design capabilities of this tool are particularly

needed by a small group. [] [] 0 0
n. This tool is well suited for the Maintenance phase. [0 [0
o. This tool is appropriate for a small software team. 0 0 0 0 0
p. Other tool(s) would be more appropriate than this one. 00 0 0 0

4

94

APPENDIX C.
SURVEY DATA

This appendix contains the data received from the 76 respondents to our survey. The
data for section I is in the first five pages and the last five pages has the data for section I.
Below are the explanations used for this appendix.

SECTION I.

Number Eplana

Position 1 = manager, 2 = project manager, 3 = analyst; 4 = other
Recommend 1 = yes; 2 = no; 3 = it depends

the x means that this response is an extra one from the same
organization regarding a different tool

SECTION II.

NumbEpann

la. & lb. the number of personnel; the L means that the respondent did not know how
people they had but it was a very large organization
other type of personnel: 1 = data entry clerks; 2 = PC support;
3 = s/w maint; 4 = comm specialist; 5 = operations; 6 = tech support
7 = sys s/w; 8 = consultants; 9 = functional analysts; 10 = proj control
11 = configuration mgt

2. 1 = greater 5 yrs; 2 = 3-5 yrs; 3 = less than 3 yrs
3. 1 = business; 2 = education; 3 = gov't
4. 1 = mainframe; 2 = mini; 3 = micro; 4 = net; 5 = combo
5. 1 = applications; 2 = systems; 3 = database; 4 = telecom; 5 = engineering

6 = real-time; 7=R &D;
6. 1 = difficult; 2 = ave; 3 = not tech difficult
7. 1 = dev new programs; 2 = maint; 3 = both
8. 1 = I or 2; 2 = 3 or 5; 3 = greater than 5
9. 1 = less than 1; 2 = less than 6; 3 = less than 12; 4 = more than 12
10a. I= yes; 2 =no
10b. 1 = yes; 2 = usually; 3 = seldom; 4 = no
I Ia. 1= yes; 2 =no
1lb. 1 = in-house; 2 = Wamier-Orr, 3 = Yourdon; 4 = Methodl (Arthur

Anderson); 5 = Stradis; 6 = Maurice
1 Ic. 1 = yes; 2= ususally; 3 = seldom; 4 = no
12. 1 = mgt; 2 - technical staff; 3 = comb; 4 = QA; 5 = strategic planning;

6 = marketing; 7 = respondent; 8 = internal customers; 9 = customer
13. 1 = highly structured; 2 = informal; 3 = in between

95

Appendix C. (cont'd)

SECTION III.

Number

Tool 1 = Prokit*Workbench; 2 = DesignAid; 3 = Automate Plus;
4 = Excelerator, 5 = Recoder, 6 = Teamwork; 7 = ProMod;
8 = Software through Pictures; 9 = Power Tools; 20 = LINC (UNISYS)
21 = Telon (Pansophic); 22 = ADADL; 23 = Apollo (DSEE);
24 = Brackets (Orr); 25 = Oracle; 26 = PACBASE (CGI);
27 = SEQUENT UNIX Prog workbench; 28 = Knowledgeware;
29 = DEC; 30 = Architect; 31 = Yourdon S/W Workbench

1. year installed
2a. 1 = yes; 2 = no
2b. 1 =yes; 2 =no
3. 1 = none; 2 = formal classes; 3 = OJT
4. 1 = all; 2 = 75%; 3 = 50%; 4 = 25%; 5 = I person; 6 = none
5a. 1 = favorable; 2 = no opinion; 3 = unfavorable
5b. 1 = favorable; 2 = no opinion; 3 = unfavorable
6. 1 indicates that the tool is used in these phases
6. other uses are 1 = data admin - data planning; 2 = documentation;

3 = rapid prototyping of DB functions; 4 = SCM
7a. 1 = fit right in; 2 = some; 3 = extensive
7b. 1= yes; 2 =no
8. 1 =yes; 2 =no
9a/b. These capabilities and features are listed below.

1 = data dictionary
2 = reusability of data dictionary objects
3 = balancing capabilities
4 = data normalization aid
5 = graphics
6 = forcing formalisms
7 = reverse engineering
8 = automatic documentation generation
9 = code generator

10 = prototyping
11 = good user interface
12 = structured methodology
13 = petrinets for real-time process
14 = ADA code generator
15 = windowing
16 = development envir for windows
17 = reports
18 = project mgt
19 = interface with DBMS system
20 = interface with SQL/DS schema creation
21 = Networks
22 = data modeling
23 = program specifications
24 = test data generator
25 = better word processing
26 = better interface with developed system

96

Appendix C. (cont'd)

27 = error checking
28 = simplified logic
29 = automatic generate system flow diagrams
31 = speed
32 = estimator
33 = scheduler
34 = project tracking
35 = more rigorous data modeling
36 = E/R tool
37 = regeneration test facility
38 = ease of maintaining existing sxstems
39 = less custom code requirements
40 = enterprize modeling
41 = diagraming capbilities
42 = overall general improvements
43 = screen painting
44 = consistancy checking
45 = better naming
46 = better interfaces
47 = database design
48 = generate 4GL code to natural language
49 = generate 4GL
50 = seamless integration with other tools
51 = strategic planning
52 = ADA support
53 = requirements tracking
54 = more systems engineering support
55 = configuration management
56 = context sensitive editor
57 = PDL tool
58 = better physical security
59 = metrics
60 = measurement
61 = disk roll out when memory is full
62 = structure charts
63 = generate structured cobol
64 = flexibility
65 = additional integration with coding
66 = structured testing
67 = more front-end design
68 = graphic outline processor
69 = documentation templates
70 = real-time aids
71 = additional dictionary formats
72 = much more powerful dictionary
73 = requirements analysis

10. 1 = yes; 2 = no; since this question was poorly worded, this item was left
blank unless the respondent clearly indicated their answer

11. same as for question 9
12. self explanatory

97
Appendix C. (cont'd)

RESPONDENTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SECTION I.

Position 1 1 44 1 x 2 1 1 1 3 2 x 1 3
Recommend use 1 1 3 1 1 x 2 1 1 1 3 x 1 1

SECTION II.

la. Company
Management 2 20 20 30 20 L 5 4 4 100 3
Systems analysts 2 25 25 15 17 L 7 10 10 100 4
Programmers 2 100100 50 50 L 24 5 5 500 2
Database specialists 2 15 15 5 9 L 2 1 1 20 0
QJA testers 0 25 25 25 0 L 1 0 0 50 0
Doc/techwriters 0 25 25 5 5 L 0 0 0 10 0
Others 0 0 0 0 0 3 7 7 0 1

other type 2 5 5 4

lb. Group
Management 1 15 3 0 3 3 0 8 2 4 0 0 0 1 3
Systems analysts 0 30 2 2 3 3 1 15 1 4 7 3 3 2 4
Programmers 0 30 18 0 13 13 2 20 4 0 0 0 0 5 2
Database specialists 2 0 1 0 2 2 0 3 0 1 0 0 0 3 0
QJAtesters 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
Doc/techwriters 0 4 0 0 1 1 1 2 0 0 0 0 0 1 0
Others 0 0 2 0 0 0 0 3 0 0 0 0 0 0 1

other type 1 3

2. Experience level 1 1 2 1 2 2 2 1 1 1 1 1 1 1 1
3. Type effort 1 1 1 1 3 3 3 5 2 1 1 1 1 5 3
4. Environment 1 5 5 5 5 5 5 5 1 1 5 1 1 5 5
5. Applicationl 3 1 1 1 1 1 1 1 3 1 1 1 1 1 1
5. Application2 10 3 7 3 3 6 3 7 3 5 5 3 6
5. Application 3 4 4
6. Software difficulty 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
7. Responsible for 1 3 3 1 3 1 1 1 1 1 3 3
8. Persons per project 1 2 1 1 2 2 2 2 1 3 3 1 1 3 1
9. Person months 2 2 2 4 4 4 4 3 2 4 4 3 3 3 2
10a. Standards in place 1 2 1 I 1 1 2 1 2 1 1 1 1 2
10b. Observed 3 3 2 2 2 2 3 1 1 1
1 la. Method in place 2 2 2 1 2 2 2 2 2 2 1 1 1 2
1 lb. Which method 2 1 1 1
1 c. Observed 2 2 1 1 1
12. Whodecided 3 4 1 1 2 2 2 2 1 1 5 1 1 2 1
13. Work environment 2 2 23 3 3 2 3 2 2 2 3 3 1 2

98
Appendix C. (cont'd)

RESPONDENTS

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SECTION I.

Position 1 2 2 x I 1 1 1 2 1 3 2 1 1
Recommend use 2 1 1 x 1 1 1 1 1 1 1 1 1 1 3

SECTION II.

la. Company
Management 2 30 100 100 50 L 14 4 5 10 100 3 100 L100
Systems analysts 3 30 300 300 50 L 25 4 12 30 1000 10 250 L 700
Programmers 8 90 400 400 200 L 45 6 20 20 1000 251000 L 800
Database specialists 0 0 30 30 40 L 6 0 3 1 30 5 50 L 50
QJAtesters 0 0 6 6 25 L 0 0 0 0 10 0 20 L 30
Doc/techwriters 1 0 1 1 10 L 0 0 2 5 10 0 50 L 70
Others 4 0 100 100 0 0 0 35 10 1000 0 0 0

other type 5 6

lb. Group
Management 1 10 0 0 4 1 4 1 0 5 5 0 10 6 2
Systems analysts 4 15 4 4 10 3 15 2 2 30 20 2 10 31 6
Programmers 0 80 2 2 0 13 25 2 4 20 10 3 30 0 6
Database specialists 0 0 0 0 15 0 6 0 0 1 2 0 10 6 3
Q/Atesters 0 0 0 0 0 4 0 0 0 0 0 0 3 6 1
Doc/techwriters 0 0 0 0 2 0 0 0 0 0 0 0 5 1 1
Others 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

other type

2. Experience level 1 2 1 1 1 1 1 2 2 2 2 1 2 1 1
3. Typeeffort 1 1 1 1 1 3 1 4 2 1 1 1 1 3 5
4. Environment 1 1 1 1 5 5 1 1 1 1 5 5 1 1 5
5. Applicationl 1 1 1 1 1 1 1 5 1 1 1 1 1 1 1
5. Application2 3 3 3 6 3 3 3 3 3
5. Application 3 4 4 6 4 5 11
6. Software difficulty 2 2 2 2 2 1 2 2 2 1 2 2 1 1 1
7. Responsible for 3 3 1 1 1 1 1 1 3 3 3 1 3 3 3
8. Persons per project 1 3 2 2 3 3 2 2 2 2 2 2 3 2 3
9. Person months 3 4 4 3 4 4 3 2 3 4 3 4 4 4
10a. Standards in place 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1
10b. Observed 3 3 3 3 2 2 2 3 1 2 3 2
lla. Method in place 2 2 1 1 1 1 2 2 2 2 2 2 1 1 1
I lb. Which method 1 1 3 1 1 1
1 lc. Observed 3 3 2 2 3 2
12. Whodecided 2 3 3 3 1 3 3 2 3 3 3 2 3 2 3
13. Work environment 2 3 3 3 1 3 3 2 3 3 3 2 3 2 3

99
Appendix C. (cont'd)

RESPONDENTS

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

SECTION I.

Position 1 2 4 1 1 2 1 3 2 3 2 1 3 1 1
Recommend use 3 1 1 1 1 1 1 1 1 1 1 1 1 1

SECTION I.

la. Company
Management 2 1000 4 70 L 10 100 7 20
Systems analysts 4 3000 30 50 L 5 70 11 60
Programmers 12 3000 60250 L 30 200 10 140
Database specialists 1 500 20 15 L 0 10 0 0
Q/Atesters 2 300 0 20 L 1 5 0 8
Others 0 0 0 0 0 400 8 150

other type 5 5 5

lb. Group
Management 1 11 1 2 2 5 1 1 6 1 1 1 1 2 3
Systems analysts 3 30 1 4 7 50 5 6 0 3 4 1 2 6 4
Programmers 4 5 1 12 0 100 20 0 140 5 6 3 0 3 8
Database specialists 0 3 0 1 0 5 0 2 0 2 1 0 0 0 2
Q/Atesters 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
Doc/techwriters 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0
Others 0 6 0 0 0 0 000 10 0 0 0 0 0

other type 7 8

2. Experience level 1 I 1 1 2 1 2 1 1 1 1 1 1 2 2
3. Typeeffort 1 3 6 3 5 5 1 1 5 5 3 3 1 3 1
4. Environment 5 5 2 2 5 5 3 5 4 5 5 2 1 1 1
5. Applicationl 5 1 6 2 1 1 5 1 1 1 1 6 1 1 1
5. Application2 6 5 5 5 2 6 2 3 2 2
5. Application3 7 6 6 6 4 3 6 3 3
6. Software difficulty 1 2 2 1 1 1 1 1 2 1 1 1 1 2 2
7. Responsible for 1 3 1 1 1 3 1 1 3 1 3 1 3 3
8. Persons per project 3 1 2 3 1 3 1 3 2 3 1 2 1 2
9. Person months 4 3 4 4 4 4 3 4 4 3 4 4 2 1 3
10a. Standards in place 2 1 1 1 2 1 2 2 2 1 2 2 1 1 1
10b. Observed 2 2 1 2 2 2 2 2
lla. Method in place 2 2 1 1 2 2 2 1 2 2 1 2 2 2 2
I Ib. Which method 3 1 3 3 1 4
1 lc. Observed 3 1 2 3 2 2

12. Whodecided 3 3 2 1 2 3 2 2 2 2 3 2 3 2 3
13. Work environment 3 3 2 1 2 3 2 2 2 2 3 2 3 2 3

100
Appendix C. (cont'd)

RESPONDENTS

46 47 48 49 50 51 5253 54 55 56 57 58 59 60
SECTION I.

Position 1 2 2 2 x 1 x 1 2 1 1 2 x x
Recommend use 1 1 2 x 1 x 1 1 1 1 1 x x

SECTION II.

la. Company
Management L 20 30 300300 L L10 40 1 4 200 120 120 120
Systems analysts L 75 200 500 500 L L12 20 1 0200 60 60 60
Programmers L 150 200 500 500 L L56 100 5 20 40010001000 1000
Database specialists L 10 7 50 50 L L 3 5 0 2 150 35 35 35
Q/Atesters L 30 100100 L L 0 5 0 0 0 20 20 20
Doc/techwriters L 5 70 200200 L L 1 0 0 7 50 18 18 18
Others 0 0 0 0 0 0 0 0200 30 30 30

other type 9 10 10 10

lb. Group
Management 1 1 6 2 2 1.5 6 1 1 1 1 4 10 10 10
Systems analysts 7 8 12 10 10 0 0 7 6 1 5 10 8 8 8
Programmers 0 8 7 10 10 2.5 140 8 10 2 7 0 50 50 50
Database specialists 0 0 2 2 2 0 0 0 1 0 0 5 2 2 2
QJAtesters 0 0 3 0 0 0 0 0 0 0 0 0 3 3 3
Doc/techwriters 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0
Others 0 0 0 0 0 0 0 0 0 0 0 20 3 3 3

other type 9 10 io 10

2. Experience level 1 2 1 1 1 2 1 2 2 3 2 2 2 2 2
3. Type effort 3 1 3 3 3 1 3 1 3 3 1 3 3 3 3
4. Environment 5 4 5 5 5 5 4 1 5 1 5 5 5 5 5
5. Applicationl 1 3 2 1 1 6 1 1 1 2 2 1 1 1 1
5. Application2 5 4 3 2 2 3 5 3 2 5 2 3 3 3
5. Application 3 6 6 3 3 6 3 6 3 4 4 4
6. Software difficulty 1 2 1 1 1 1 2 2 2 2 2 1 2 2 2
7. Responsible for 1 1 1 3 3 3 3 1 3 3 3 1 1 1 1
8. Persons per project 3 3 3 3 3 2 2 2 2 2 1 3 2 2 2
9. Person months 4 4 4 4 4 4 4 2 3 3 2 4 4 4 4
10a. Standards in place 1 1 2 2 2 2 2 1 2 1 2 1 1 1 1
10b. Observed 1 2 2 2 2 4 2 2 2
lla. Method in place 2 2 2 2 2 2 2 1 2 1 2 1 1 1 1
1 lb. Which method 2 1 1 1 1 1
11 c. Observed 2 2 3 2 2 2
12. Whodecided 3 3 2 2 2 2 2 3 2 2 2 2 1 1 1
13. Work environment 3 3 2 2 2 2 2 3 2 2 2 2 1 1 1

101
Appendix C. (cont'd)

RESPONDENTS

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
SECTION I.

Position 1 2 1 1 4 2 1 1 1 1 1 2 x 1 1 1
Reconmenduse 1 3 1 1 1 1 1 1 1 1 1 1 x 1 1 1

SECTION II.

Ia. Company
Management 25 100 2 4 4 1 3 1000 12 4 400 400 20 300
Systems analysts 100 75 4 11 25 300 2 8 1500 75 0 300 300 20
Programmers 25 500 13 35 15 200 2 10 3500 75 3515001500 1002500
Database specialists 0 100 1 2 5 50 0 2 500 8 0 20 20 9
Q/Atesters 0 50 2 0 1 30 0 6 2000 12 0 200 200 20
Doc/techwriters 0 75 2 0 5 100 0 2 1000 12 0 40 40 2
Others 0 0 0 0 3 0 0 0 0 12 0 0 0 0

other type 11 12

lb. Group
Management 7 7 1 1 2 2 1 3 20 4 1 3 3 3 1 1
Systems analysts 18 10 4 0 4 2 2 8 20 25 0 2 2 2 1 0
Programmers 18 5 11 9 2 9 2 10 40 0 12 20 20 15 13 2
Database specialists 0 1 1 1 0 2 0 2 10 4 0 0 0 1 1 0
QJAtesters 0 2 1 0 0 4 0 6 5 0 1 0 0 4 0 0
Doc/techwriters 0 2 2 0 2 1 0 2 5 1 0 0 0 0.5 1 0
Others 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

other type

2. Experience level 2 2 2 1 1 2 1 1 1 2 2 2 2 1 1 3
3. Type effort 7 3 8 5 3 8 1 3 1 3 3 1 1 1 6 4
4. Environment 5 5 5 5 5 5 2 5 5 5 5 1 1 5 1 3
5. Application l 1 5 1 4 1 1 1 1 1 3 6 1 1 1 5 5
5. Application2 2 6 2 6 6 2 3 2 5 3 3
5. Application 3 3 7 3 3 6
6. Softwaredifficulty2 1 1 1 2 1 2 2 2 2 1 2 2 2 1 1
7. Responsible for 3 1 3 1 3 1 3 1 1 3 1 3 3 3 3 1
8. Persons per proj 2 3 2 3 3 3 1 3 3 2 2 2 2 3 2 2
9. Person months 4 4 4 4 4 4 2 4 3 3 4 2 2 3 4 4
10a. Standards 1 2 1 1 2 1 2 2 1 1 1 1 1 1 2
10b. Observed 1 4 2 2 1 4 2 3 3 3 2 2
lla. Method in place 2 1 1 1 2 2 1 1 2 1 1 1 1 1 1 2
llb. Which method 1 3 3 3 5 3 1 2 2 6 3
lic. Observed 2 2 2 2 1 2 2 3 3 1 2
12. Whodecided 2 2 1 3 2 3 3 3 3 3 3 2 2 3 3 2
13. Work environ 2 2 1 3 2 3 3 3 3 3 3 2 2 3 3 2

102
Appendix C. (cont'd)

RESPONDENTS

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SECTION III.

Tool 1 1 1 1 1 4 1 1 1 1 1 2 20 2 2
1. Date installed 87 88 88 88 88 87 88 88 86 87 87 87 86 85 88
2a. Training received 1 2 2 2 1 1 2 1 2 1 2 1 1 2 1
2b. Appropriate 1 1 1 1 1 1 1 2 1
3. On-going training 3 3 3 3 4 4 1 4 3 2 4 3 4 3 1
4. People use it 5 5 5 4 2 3 2 2 4 3 5 1 1 4 3
5a. Expresponse 1 1 1 1 1 1 1 1 1 1 3 1 1 1
5b. Junior response 2 2 1 1 1 1 1 2 3 2 1 2 2
6. Definition req 1 1 1 1 1 1 1 1 1 1 1 1 1
6. Analysis 1 1 1 1 1 1 1 1 1 1 1 1
6. Design 1 1 1 1 1 1 1 1 1
6. Coding 1 1
6. Testing 1 1
6. Maintenance 1 1 1 1
6. Other use 1
7a. Modify 2 2 2 2 2 2 1 2 1 2 3 1 2 1 2
7b. Anticipated 1 1 1 1 1 1 1 1 1 1 1 1
8. Wise decision 1 1 1 1 1 2 1 1 1 1 2 1 1 1
9a. Usefulcap#1 1 1 6 5 11 12 10 5 5 10 5 27 5 1
9a. Useful cap #2 2 5 5 10 1 11 10 1 1 28
9a. Useful cap #3 3 1 1 17 3 4
9b. Desired cap #1 4 7 9 13 18 20 4 9 5 8 1
9b. Desired cap #2 8 9 23 25 29
9c. Desired cap #3 9 7 24 26
10. Easier 1 1 1 2 1 1 2 1
11. Addltool#1 9 9 9 14 7
11. Addl tool #2 15 19
11. Addl tool #3 16
12a. Easytouse 2 4 4 3 2 5 3 2 1 1 2 3 2 2 2
12b. HelpRD 1 3 4 2 1 2 2 2 1 1 1 5 5 1 2
12c. Enhance prod 1 3 3 2 1 5 2 4 1 1 1 5 1 3 3
12d. Analysis 1 2 4 3 2 5 3 2 1 1 1 3 2 2 3
12e. Too rigorous 3 3 2 4 5 3 4 3 5 5 4 3 5 4 5
12f. Resistant to it 3 3 3 4 5 5 4 3 5 5 2 5 5 4 5
12g. Required use 1 3 1 2 2 5 2 3 1 1 1 5 3 3 2
12h. Design phase 1 3 2 3 1 2 2 2 1 1 1 5 1 2 1
12i. Economicvalue 1 2 1 3 1 4 2 5 1 1 1 5 1 2 2
12j. Coding phase 2 4 5 3 4 4 2 5 5 5 5 1 2 3
12k. Configmgt 1 3 2 2 3 4 2 1 3 5 1 3 1
121. Testing phase 5 3 4 5 3 3 3 2 1 3 5 5 2 2 4
12m. Designcap 2 3 2 3 2 3 3 5 1 3 2 5 1 2 2
12n. Maintphase 4 2 5 4 2 2 4 2 1 1 5 5 1 3 1
12o. Approp for small 2 2 1 2 2 2 2 5 1 1 2 5 1 2 1
12p. Others better 4 3 1 4 1 2 5 5 3 3 5 3

103
Appendix C. (cont'd)

RESPONDENTS

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

SECTION III.

Tool 2 2 2 21 2 2 3 3 3 3 3 3 3 3 2
1. Date installed 87 88 86 87 84 87 87 88 85 88 87 88 85
2a. Training received 1 1 2 1 1 1 1 1 1 2 1 1 1 1 2
2b. Appropriate 2 1 1 1 1 1 1 1 1 1 1 1 1
3. On-goingtraining 3 4 3 2 4 4 2 3 2 1 4 3 2 4 1
4. People use it 1 4 3 3 1 4 4 2 3 5 3 4 4 2 6
5a. Expresponse I 1 1 1 1 1 1 1 1 1 1 1 1 1 3
5b. Junior response 2 1 1 1 1 1 1 1 2 2 1 1 1 1 2
6. Definition req 1 1 1 1 1 1 1 1 1 1 1 1
6. Analysis 1 1 1 1 1 1 1 1 1 1 1 1 1
6. Design 1 1 1 1 1 1 1 1 1 1 1
6. Coding 1 1 1
6. Testing 1 1
6. Maintenance 1 1 1
6. Other use 2 1
7a. Modify 1 3 2 1 1 2 2 3 2 2 2 3 2 2 1
7b. Anticipated 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8. Wise decision 2 1 1 1 1 1 1 1 1 1 1 1 1 2
9a. Useful cap #1 5 5 37 1 1 4 5 41 5 5 47 50 6 1
9a. Useful cap #2 3 38 5 5 6 44 8 27
9a. Useful cap #3 27 1
9b. Desired cap #1 31 35 39 22 25 10 42 43 46 48 9 11 19
9b. Desired cap #2 10 45
9c. Desired cap #3
10. Easier 1 1 1 1 1 1 2 1 1 1
11. Addltool#1 30 18 36 7 40 9 9 49 51 11
11. Addl tool #2 24 32
11. Addl tool #3
12a. Easytouse 4 3 1 2 2 1 2 3 2 2 3 2 2 1 2
12b. HelpRD 2 1 1 3 3 1 2 2 1 3 1 3 1 1 1
12c. Enhance prod 3 2 1 1 3 1 2 1 2 2 1 2 2 1 1
12d. Analysis 2 2 1 5 2 1 1 1 2 4 1 1 1 1 3
12e. Too rigorous 2 5 5 5 5 5 4 5 2 3 4 5 5 2
12f. Resistant to it 3 3 5 5 5 5 4 5 3 5 4 4 3 5 3
12g. Required use 2 2 5 1 1 1 1 3 4 1 3 1 1 1
12h. Design phase 1 2 3 1 3 1 2 1 2 2 1 3 1 1 2
12i. Economic value 3 2 1 4 1 1 2 4 3 1 2 2 2 1 3
12j. Coding phase 5 3 5 1 4 1 5 4 4 5 3 5 3 4
12k. Configmgt 2 3 2 2 2 1 3 3 4 3 2 1 2
121. Testing phase 3 5 5 1 2 1 5 4 5 4 4 5 2 1 4
12m. Designcap 2 1 1 4 2 3 2 1 2 2 1 2 1 1 4
12n. Maintphase 3 1 2 4 4 3 2 3 3 4 5 5 2 1 3
12o. Approp for small 3 2 1 5 1 1 2 1 2 1 1 1 2 1 3
12p. Others better 3 4 5 5 3 3 5 5 2 3 5 5 5 5 1

104
Appendix C. (cont'd)

RESPONDENTS

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

SECTION III.

Tool 4 4 6 6 6 6 6 6 6 6 6 6 5 5 5
1. Date installed 87 87 86 87 87 86 88 87 87 88 88 87 87
2a. Training received 2 1 2 2 2 1 2 1 1 2 2 2 1 1 1
2b. Appropriate 1 2 1 1 1 1 1 1
3. On-going training 3 3 1 4 3 3 3 1 3 3 2 3 3 3 4
4. People use it 3 2 5 3 4 4 4 4 3 4 4 4 4 4 5
5a. Expresponse 3 1 2 1 1 1 1 1 1 1 1 1 1 1 3
5b. Junior response 3 1 2 1 2 1 3 2 1 2 1 3 1 1 1
6. Definition req 1 1 1 1 1 1 1 1
6. Analysis 1 1 1 1 1 1 1 1 1 1 1
6. Design 1 1 1 1 1 1 1 1 1 1
6. Coding
6. Testing
6. Maintenance 1 1 1 1
6. Other use
7a. Modify 2 2 3 2 2 2 2 2 3 2 2 2 1 1 2
7b. Anticipated 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2
8. Wise decision 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9a. Useful cap #1 1 1 27 23 27 27 5 5 5 5 27 5 7 62 63
9a. Useful cap #2 5 5 5 5 1 15 27 1 1 8
9a. Useful cap #3 27 21 50
9b. Desired cap #1 52 53 52 58 53 9 61 7
9b. Desired cap #2 54 7
9c. Desired cap #3
10. Easier 2 1 1 2 1 1 1 1 1 1 1
11. Addl tool#1 9 52 55 56 1 24 59 9 50
11. Addltool#2 18 18 57 60 57
11. Addl tool #3 24
12a. Easytouse 3 3 2 1 1 1 1 1 1 2 2 3 2 1 1
12b. HelpRD 2 1 2 2 3 2 2 1 1 3 5 3 5 5
12c. Enhance prod 3 2 2 2 3 2 3 2 1 2 2 3 2 2 1
12d. Analysis 3 3 1 3 3 2 1 1 2 3 1 3 3 5
12e. Too rigorous 4 4 2 3 5 3 5 5 4 3 3 4 5 3
12f. Resistant to it 3 4 5 4 4 5 2 3 5 4 5 5 5 5 2
12g. Required use 3 3 2 2 5 2 3 3 1 4 2 3 1 2 1
12h. Design phase 2 1 2 5 2 1 2 2 2 2 2 4 3 4
12i. Economic value 4 3 3 2 3 2 3 3 2 3 3 3 2 2 5
12j. Coding phase 3 2 5 5 5 2 2 4 4 5 1 3 2 1
12k. Configmgt 3 3 3 3 2 4 4 2 4 5 3 2 3
121. Testing phase 4 2 4 5 3 2 3 3 4 5 1 1 1 2
12m. Designcap 2 2 2 5 2 3 1 3 3 2 2 3 3 4
12n. Maintphase 2 2 2 4 5 4 2 1 2 2 2 3 1 1 1
12o. Approp for small 3 2 2 3 3 1 2 1 2 2 2 2 1 2 4
12p. Others better 2 4 3 4 5 5 3 5 5 4 4 3 3 5 3

105
Appendix C. (cont'd)

RESPONDENTS

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

SECTION III.

Tool 7 7 7 7 22 8 23 24 25 26 27 28 2 4 9
1. Date installed 87 87 85 87 87 88 87 86 88 86 87 88 86 86 88
2a. Training received 1 1 1 1 1 2 1 2 1 1 2 1 1 1 2
2b. Appropriate 1 1 1 1 1 1 21 1 1 1 1
3. On-going training 1 1 3 3 3 4 4 4 3 4 3 3 3 3 3
4. People use it 1 1 3 5 2 1 1 4 3 2 1 1 4 4 3
5a. Expresponse 3 1 1 3 3 1 1 1 1 1 1 1 3 1 1
5b. Junior response 2 2 3 3 3 2 1 1 2 1 1 1 2 2 3
6. Definition req 1 1 1 1 1 1 1 1 1
6. Analysis 1 1 1 1 1 1 1 1 1 1 1 1
6. Design 1 1 1 1 1 1 11 1 1 1 1
6. Coding 1 1 1 1 1 1 1
6. Testing 1 1 1 1
6. Maintenance 1 1 1 1
6. Other use 2
7a. Modify 1 1 3 2 2 3 1 1 1 2 3 2 1 2 2
7b. Anticipated 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8. Wise decision 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1
9a. Useful cap #1 5 5 6 5 59 1 5 17 9 55 5 5 5 1
9a. Useful cap #2 1 27 5 9 43 1 3 1 5
9a. Useful cap #3 23 1 41 36
9b. Desired cap #1 53 25 11 64 65 59 67 44 42 50 64
9b. Desired cap #2
9c. Desired cap #3
10. Easier 2 1 2 2 1 1 1 1 1 1
11. Addl tool #1 52 66 18 9 68
11. Addl tool #2
11. Addl tool #3
12a. Easy to use 3 1 2 5 1 2 3 2 1 3 3 1 4 2 2
12b. HelpRD 1 2 2 3 5 2 1 5 2 1 4 1 2 2 2
12c. Enhance prod 2 3 1 5 1 3 2 2 1 1 2 1 2 2 1
12d. Analysis 2 3 1 5 5 2 3 4 3 3 4 1 3 3 2
12e. Too rigorous 4 3 5 1 4 4 5 3 4 4 4 2 2 3
12f. Resistant to it 3 4 4 1 5 3 3 4 4 2 5 5 3 4 4
12g. Required use 1 3 1 4 2 3 4 2 4 1 1 1 3 4 2
12h. Design phase 3 5 3 5 2 3 1 1 1 1 3 1 3 3
12i. Economic value 4 5 2 5 1 4 3 1 1 1 1 1 2 3 2
12j. Coding phase 5 5 1 5 3 3 1 1 1 1 1 3 4
12k. Configmgt 3 5 4 5 5 3 1 3 4 1 1 2 4 4 4
121. Testing phase 5 5 3 5 5 3 1 2 4 1 1 5
12m. Design cap 2 5 1 5 3 2 3 1 1 1 2 2 2 3
12n. Maintphase 3 5 2 5 5 3 1 2 1 1 1 4
12o. Approp for small 2 3 2 4 3 2 1 1 1 1 1 1 3 2 2
12p. Others better 3 3 3 1 1 3 1 5 4 4 2 2 3

106
Appendix C. (cont'd)

RESPONDENTS

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

SECTION III.

Tool 9 9 9 9 29 7 9 1 30 2 2 26 24 26 9 31
1. Date installed 88 88 87 88 88 87 86 87 88 87 88 87 87
2a. Training received 2 1 2 2 1 2 2 1 2 1 1 1 1 1 2 2
2b. Appropriate 1 1 1 1 1 1 1 1 1 1
3. On-going training 4 4 4 3 3 3 3 3 3 3 3 2 3 4 1 3
4. People use it 1 2 2 1 3 1 3 4 3 4 4 2 4 4 4 5
5a. Expresponse 1 1 1 3 1 1 1 1 1 1 1 1 3 1
5b. Junior response 1 1 3 1 1 3 1 2 1 1 2 3 2 1 1 2
6. Definitionreq 1 1 1 1 1 1 1 1 1
6. Analysis 1 1 1 1 1 1 1 1 1 1 1 1 1 1
6. Design 1 1 1 1 1 1111 1 1 1 1
6. Coding 1 1 1 1 1
6. Testing 1 1 1 1
6. Maintenance 1 1 1 1
6. Other use 4
7a. Modify 2 2 2 2 2 2 2 3 2 1 2 2 1 3 1 3
7b. Anticipated 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
8. Wise decision 1 1 1 1 1 1 1 1 1 1 1 1 1 1
9a. Useful cap #1 5 5 44 1 1 57 5 1 41 5 1 64 6 1 5 1
9a. Useful cap #2 12 1 3 55 27 4 1 5 8 5 67 1 17
9a. Useful cap #3 44 41 51 5 3 17 44
9b. Desired cap #1 69 70 41 ^, - 11 72 9 73 9 7 62
9b. Desired cap #2 71 25 8 9 41
9c. Desired cap #3
10. Easier 11 111 1 1 111 1 1 1 1
11. Addl tool #1 56 50 53 36 7
11. Addl tool #2 55
11. Addl tool #3 6
12a. Easytouse 1 2 2 1 2 4 2 3 1 1 4 4 3 3 1 2
12b. HelpRD 3 4 5 1 3 2 1 2 2 1 3 4 1 1 4 2
12c. Enhance prod 2 2 1 2 3 2 1 3 1 1 2 2 1 1 2 2
12d. Analysis 2 2 1 2 3 2 2 2 2 1 3 4 1 1 2 3
12e. Too rigorous 5 3 5 5 3 3 4 3 4 5 5 5 5 5 4 4
12f. Resistant to it 5 4 5 5 2 4 5 4 4 4 4 3 4 3 2 4
12g. Requireduse 1 3 1 4 1 3 2 2 2 2 3 2 1 1 2 2
12h. Design phase 1 1 2 2 2 2 3 2 1 1 3 2 1 1 3 1
12i. Economic value 2 4 1 1 2 3 1 3 1 1 3 4 2 1 1 1
12j. Coding phase 5 3 4 5 1 5 3 3 3 3 4 1 4 1 3 1
12k. Configmgt 3 2 2 3 1 5 3 2 2 2 5 1 2 3 5 1
121. Testing phase 5 2 3 5 1 5 3 3 3 3 5 1 4 3 5 3
12m. Designcap 1 1 1 2 2 2 3 2 1 1 2 4 1 1 2 2
12n. Maintphase 2 2 3 3 3 2 3 2 4 1 3 1 2 1 5 3
12o. Approp for small 2 2 1 1 2 2 1 3 2 1 2 3 1 1 1 1
12p. Others better 3 3 4 4 2 2 3 3 3 4 2 2 4 5 4 3

